Source:

PAT A1123 Is It a Complete AVL Tree (30 分)

Description:

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO

Keys:

Attention:

  • 判断完全二叉树,while的固定写法
  • Rotation中,先Update root,再Update temp,否则会影响结果,注意

Code:

 /*
Data: 2019-06-24 15:36:45
Problem: PAT_A1123#Is It a Complete AVL Tree
AC: 35:46 题目大意:
由插入序列构造一棵AVL树,输出层次遍历并判断是否为一棵完全二叉树 基本思路:
构造平衡二叉树,
中序遍历并判断是否为完全二叉树
*/
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
struct node
{
int data;
int height;
node *lchild, *rchild;
}; int GetHeight(node *root)
{
if(root == NULL)
return ;
else
return root->height;
} int GetBalanceFactor(node *root)
{
return GetHeight(root->lchild) - GetHeight(root->rchild);
} void UpdataHeight(node *&root)
{
root->height = max(GetHeight(root->lchild),GetHeight(root->rchild))+;
} void LeftRotation(node *&root)
{
node *temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void RightRotation(node *&root)
{
node *temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void Insert(node *&root, int x)
{
if(root == NULL)
{
root = new node;
root->data = x;
root->height=;
root->lchild = root->rchild = NULL;
}
else if(x < root->data)
{
Insert(root->lchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == )
{
if(GetBalanceFactor(root->lchild) == )
RightRotation(root);
else
{
LeftRotation(root->lchild);
RightRotation(root);
}
}
}
else
{
Insert(root->rchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == -)
{
if(GetBalanceFactor(root->rchild) == -)
LeftRotation(root);
else
{
RightRotation(root->rchild);
LeftRotation(root);
}
}
}
} int IsComplete(node *root, int n)
{
queue<node*> q;
q.push(root);
int cnt=, ans=;
while(!q.empty())
{
root = q.front();
q.pop();
if(root)
{
printf("%d%c", root->data,++cnt==n?'\n':' ');
q.push(root->lchild);
q.push(root->rchild);
}
else
{
if(cnt==n)
break;
else
{
ans=;
while(!q.empty())
{
root = q.front();
if(root) break;
else q.pop();
}
}
}
}
return ans;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE int n,x;
node *root = NULL;
scanf("%d", &n);
for(int i=; i<n; i++)
{
scanf("%d", &x);
Insert(root, x);
}
if(IsComplete(root, n))
printf("YES");
else
printf("NO"); return ;
}

PAT_A1123#Is It a Complete AVL Tree的更多相关文章

  1. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  2. 1123 Is It a Complete AVL Tree

    1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...

  3. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  4. A1123. Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  5. PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  6. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  8. PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. PAT甲级——A1123 Is It a Complete AVL Tree【30】

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. Mac下使用OpenMP

    Mac下使用OpenMP,修改Build Options 下面的compiler for c/c++/objective-C 为 LLVM GCC 4.2 - Language 则可以找到Enable ...

  2. Ambari-部署常见问题

    重新启动ambari-server端后调用install.start API后返回200 导致该问题的解决办法是server在启动后没有收到agent的心跳即没有与agent建立连接,在此时进行API ...

  3. 使用markdown和gitblog搭建自己的博客

    GitBlog官网 GitBlog文档 Gitblog官方QQ群:84692078 GitBlog是一个简单易用的Markdown博客系统.它不须要数据库,没有管理后台功能,更新博客仅仅须要加入你写好 ...

  4. HDU 4259(Double Dealing-lcm(x1..xn)=lcm(x1,lcm(x2..xn))

    Double Dealing Time Limit: 50000/20000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 菜鸟nginx源代码剖析数据结构篇(六) 哈希表 ngx_hash_t(上)

    菜鸟nginx源代码剖析数据结构篇(六) 哈希表 ngx_hash_t(上) Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog. ...

  6. SpringMVC中的 --- 异常处理

    系统异常处理器SimpleMappingExceptionResolver 处理器方法执行过程中,可能会发生异常,不想看到错误黄页,想看到一个友好的错误提示页. 自定义异常处理器 使用异常处理注解

  7. SQL 琐碎记录

    1. 查看mysql现在已提供什么存储引擎: SHOW ENGINES ; 2. 查看mysql当前默认的存储引擎: SHOW VARIABLES LIKE '%storage_engine%'; 3 ...

  8. CNN tensorflow text classification CNN文本分类的例子

    from:http://deeplearning.lipingyang.org/tensorflow-examples-text/ TensorFlow examples (text-based) T ...

  9. 洛谷 P1081 开车旅行 —— 倍增

    题目:https://www.luogu.org/problemnew/show/P1081 真是倍增好题! 预处理:f[i][j] 表示从 i 点开始走 2^j 次 AB (A,B各走一次)到达的点 ...

  10. SPOJ GSS 系列

    来怒做GSS系列了: GSS1:https://www.luogu.org/problemnew/show/SP1043 这题就是维护一个 sum , mx , lmx , rmx,转移时用结构体就好 ...