Source:

PAT A1123 Is It a Complete AVL Tree (30 分)

Description:

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO

Keys:

Attention:

  • 判断完全二叉树,while的固定写法
  • Rotation中,先Update root,再Update temp,否则会影响结果,注意

Code:

 /*
Data: 2019-06-24 15:36:45
Problem: PAT_A1123#Is It a Complete AVL Tree
AC: 35:46 题目大意:
由插入序列构造一棵AVL树,输出层次遍历并判断是否为一棵完全二叉树 基本思路:
构造平衡二叉树,
中序遍历并判断是否为完全二叉树
*/
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
struct node
{
int data;
int height;
node *lchild, *rchild;
}; int GetHeight(node *root)
{
if(root == NULL)
return ;
else
return root->height;
} int GetBalanceFactor(node *root)
{
return GetHeight(root->lchild) - GetHeight(root->rchild);
} void UpdataHeight(node *&root)
{
root->height = max(GetHeight(root->lchild),GetHeight(root->rchild))+;
} void LeftRotation(node *&root)
{
node *temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void RightRotation(node *&root)
{
node *temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void Insert(node *&root, int x)
{
if(root == NULL)
{
root = new node;
root->data = x;
root->height=;
root->lchild = root->rchild = NULL;
}
else if(x < root->data)
{
Insert(root->lchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == )
{
if(GetBalanceFactor(root->lchild) == )
RightRotation(root);
else
{
LeftRotation(root->lchild);
RightRotation(root);
}
}
}
else
{
Insert(root->rchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == -)
{
if(GetBalanceFactor(root->rchild) == -)
LeftRotation(root);
else
{
RightRotation(root->rchild);
LeftRotation(root);
}
}
}
} int IsComplete(node *root, int n)
{
queue<node*> q;
q.push(root);
int cnt=, ans=;
while(!q.empty())
{
root = q.front();
q.pop();
if(root)
{
printf("%d%c", root->data,++cnt==n?'\n':' ');
q.push(root->lchild);
q.push(root->rchild);
}
else
{
if(cnt==n)
break;
else
{
ans=;
while(!q.empty())
{
root = q.front();
if(root) break;
else q.pop();
}
}
}
}
return ans;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE int n,x;
node *root = NULL;
scanf("%d", &n);
for(int i=; i<n; i++)
{
scanf("%d", &x);
Insert(root, x);
}
if(IsComplete(root, n))
printf("YES");
else
printf("NO"); return ;
}

PAT_A1123#Is It a Complete AVL Tree的更多相关文章

  1. PAT甲级1123. Is It a Complete AVL Tree

    PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...

  2. 1123 Is It a Complete AVL Tree

    1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...

  3. 1123. Is It a Complete AVL Tree (30)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  4. A1123. Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  5. PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  6. 1123 Is It a Complete AVL Tree(30 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  7. PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)

    嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...

  8. PAT 1123 Is It a Complete AVL Tree

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. PAT甲级——A1123 Is It a Complete AVL Tree【30】

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

随机推荐

  1. C - 剪花布条

    一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢?  Input输入中含有一些数据,分别是成对出现的花布条和 ...

  2. [转]十五天精通WCF——第十四天 一起聊聊FaultException

     我们在玩web编程的时候,可能你会不经意的见到一些http500的错误,我想你应该不会陌生的,原因你应该也知道,服务器异常嘛, 这时候clr会把这个未处理的异常抛给iis并且包装成http500的错 ...

  3. HDU 3001

    题目中说明每个城市至少要走一次,至多走2次,因此要用到三进制压缩,然后就是状态转移方程了. 这道题就处理三进制的地方麻烦一点.同时注意,在选择最小长度时,一定是要每一个点都经过至少一次的,即是状态的每 ...

  4. 《Android源代码设计模式解析与实战》读书笔记(十八)

    第十八章.代理模式 代理模式也称托付模式,是结构型设计模式之中的一个.是应用广泛的模式之中的一个. 1.定义 为其它对象提供一种代理以控制对这个对象的訪问. 2.使用场景 当无法或不想直接訪问某个对象 ...

  5. 表现与数据分离;前台MVC

    无意间看到一个web前端招聘要求:表现与数据分离 这名词对我非常陌生,我就去百度了下 由于有各种莫名其妙的需求,所以才会出现我们前端MVC这样的莫名其妙的东西... 我们的html就是model,我们 ...

  6. oc27--synthesize,省略getset实现

    // // Person.h #import <Foundation/Foundation.h> @interface Person : NSObject { @public int _a ...

  7. Android4.4 wpa_supplicant深入分析之wpa_supplicant初始化流程续

    下面我们将接上一篇文章继续分析main中第二个关键函数wpa_supplicant_add_iface. wpa_supplicant_add_iface用于向wpa_supplicant添加接口设备 ...

  8. java输出双引号

    java输出双引号 直接看例子 //输出双引号 public class Test { public static void main(String[] args) { System.out.prin ...

  9. System.IO.Path

    System.IO.Path 分类: C#2011-03-23 10:54 1073人阅读 评论(0) 收藏 举报 扩展磁盘string2010c System.IO.Path提供了一些处理文件名和路 ...

  10. 自顶向下(递归)的归并排序和自底向上(循环)的归并排序——java实现

    归并排序有两种实现方式,自顶向下和自底向上.前者的思想是分治法,现将数组逐级二分再二分,分到最小的两个元素后,逐级往上归并,故其核心在于归并.后者的思想相反,采用循环的方式将小问题不断的壮大,最后变成 ...