PAT_A1123#Is It a Complete AVL Tree
Source:
Description:
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print
YESif the tree is complete, orNOif not.
Sample Input 1:
5
88 70 61 63 65
Sample Output 1:
70 63 88 61 65
YES
Sample Input 2:
8
88 70 61 96 120 90 65 68
Sample Output 2:
88 65 96 61 70 90 120 68
NO
Keys:
- 二叉树的建立
- 二叉树的遍历
- 完全二叉树(Complete Binary Tree)
- 平衡二叉树(Self-balancing Binary Search Tree,AVL tree)
Attention:
- 判断完全二叉树,while的固定写法
- Rotation中,先Update root,再Update temp,否则会影响结果,注意
Code:
/*
Data: 2019-06-24 15:36:45
Problem: PAT_A1123#Is It a Complete AVL Tree
AC: 35:46 题目大意:
由插入序列构造一棵AVL树,输出层次遍历并判断是否为一棵完全二叉树 基本思路:
构造平衡二叉树,
中序遍历并判断是否为完全二叉树
*/
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
struct node
{
int data;
int height;
node *lchild, *rchild;
}; int GetHeight(node *root)
{
if(root == NULL)
return ;
else
return root->height;
} int GetBalanceFactor(node *root)
{
return GetHeight(root->lchild) - GetHeight(root->rchild);
} void UpdataHeight(node *&root)
{
root->height = max(GetHeight(root->lchild),GetHeight(root->rchild))+;
} void LeftRotation(node *&root)
{
node *temp = root->rchild;
root->rchild = temp->lchild;
temp->lchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void RightRotation(node *&root)
{
node *temp = root->lchild;
root->lchild = temp->rchild;
temp->rchild = root;
UpdataHeight(root);
UpdataHeight(temp);
root = temp;
} void Insert(node *&root, int x)
{
if(root == NULL)
{
root = new node;
root->data = x;
root->height=;
root->lchild = root->rchild = NULL;
}
else if(x < root->data)
{
Insert(root->lchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == )
{
if(GetBalanceFactor(root->lchild) == )
RightRotation(root);
else
{
LeftRotation(root->lchild);
RightRotation(root);
}
}
}
else
{
Insert(root->rchild, x);
UpdataHeight(root);
if(GetBalanceFactor(root) == -)
{
if(GetBalanceFactor(root->rchild) == -)
LeftRotation(root);
else
{
RightRotation(root->rchild);
LeftRotation(root);
}
}
}
} int IsComplete(node *root, int n)
{
queue<node*> q;
q.push(root);
int cnt=, ans=;
while(!q.empty())
{
root = q.front();
q.pop();
if(root)
{
printf("%d%c", root->data,++cnt==n?'\n':' ');
q.push(root->lchild);
q.push(root->rchild);
}
else
{
if(cnt==n)
break;
else
{
ans=;
while(!q.empty())
{
root = q.front();
if(root) break;
else q.pop();
}
}
}
}
return ans;
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE int n,x;
node *root = NULL;
scanf("%d", &n);
for(int i=; i<n; i++)
{
scanf("%d", &x);
Insert(root, x);
}
if(IsComplete(root, n))
printf("YES");
else
printf("NO"); return ;
}
PAT_A1123#Is It a Complete AVL Tree的更多相关文章
- PAT甲级1123. Is It a Complete AVL Tree
PAT甲级1123. Is It a Complete AVL Tree 题意: 在AVL树中,任何节点的两个子树的高度最多有一个;如果在任何时候它们不同于一个,则重新平衡来恢复此属性.图1-4说明了 ...
- 1123 Is It a Complete AVL Tree
1123 Is It a Complete AVL Tree(30 分) An AVL tree is a self-balancing binary search tree. In an AVL t ...
- 1123. Is It a Complete AVL Tree (30)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- A1123. Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT A1123 Is It a Complete AVL Tree (30 分)——AVL平衡二叉树,完全二叉树
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- 1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——1123 Is It a Complete AVL Tree (完全AVL树的判断)
嫌排版乱的话可以移步我的CSDN:https://blog.csdn.net/weixin_44385565/article/details/89390802 An AVL tree is a sel ...
- PAT 1123 Is It a Complete AVL Tree
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
- PAT甲级——A1123 Is It a Complete AVL Tree【30】
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...
随机推荐
- C - 剪花布条
一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? Input输入中含有一些数据,分别是成对出现的花布条和 ...
- [转]十五天精通WCF——第十四天 一起聊聊FaultException
我们在玩web编程的时候,可能你会不经意的见到一些http500的错误,我想你应该不会陌生的,原因你应该也知道,服务器异常嘛, 这时候clr会把这个未处理的异常抛给iis并且包装成http500的错 ...
- HDU 3001
题目中说明每个城市至少要走一次,至多走2次,因此要用到三进制压缩,然后就是状态转移方程了. 这道题就处理三进制的地方麻烦一点.同时注意,在选择最小长度时,一定是要每一个点都经过至少一次的,即是状态的每 ...
- 《Android源代码设计模式解析与实战》读书笔记(十八)
第十八章.代理模式 代理模式也称托付模式,是结构型设计模式之中的一个.是应用广泛的模式之中的一个. 1.定义 为其它对象提供一种代理以控制对这个对象的訪问. 2.使用场景 当无法或不想直接訪问某个对象 ...
- 表现与数据分离;前台MVC
无意间看到一个web前端招聘要求:表现与数据分离 这名词对我非常陌生,我就去百度了下 由于有各种莫名其妙的需求,所以才会出现我们前端MVC这样的莫名其妙的东西... 我们的html就是model,我们 ...
- oc27--synthesize,省略getset实现
// // Person.h #import <Foundation/Foundation.h> @interface Person : NSObject { @public int _a ...
- Android4.4 wpa_supplicant深入分析之wpa_supplicant初始化流程续
下面我们将接上一篇文章继续分析main中第二个关键函数wpa_supplicant_add_iface. wpa_supplicant_add_iface用于向wpa_supplicant添加接口设备 ...
- java输出双引号
java输出双引号 直接看例子 //输出双引号 public class Test { public static void main(String[] args) { System.out.prin ...
- System.IO.Path
System.IO.Path 分类: C#2011-03-23 10:54 1073人阅读 评论(0) 收藏 举报 扩展磁盘string2010c System.IO.Path提供了一些处理文件名和路 ...
- 自顶向下(递归)的归并排序和自底向上(循环)的归并排序——java实现
归并排序有两种实现方式,自顶向下和自底向上.前者的思想是分治法,现将数组逐级二分再二分,分到最小的两个元素后,逐级往上归并,故其核心在于归并.后者的思想相反,采用循环的方式将小问题不断的壮大,最后变成 ...



