BZOJ 3509 分块FFT
思路:
跟今年WC的题几乎一样 (但是这道题有重 不能用bitset水过去)
正解:分块FFT
http://blog.csdn.net/geotcbrl/article/details/50636401 from GEOTCBRL
可以看看hgr的题解..写得很详细
//By SiriusRen
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const double pi=acos(-);
const int N=;
int n,nn,num[N],R[N],L,Block,block[N],cnt[][N];
long long ans;
struct Complex{
double x,y;Complex(){}
Complex(double X,double Y){x=X,y=Y;}
}A[N],B[N],C[N];
Complex operator+(Complex a,Complex b){return Complex(a.x+b.x,a.y+b.y);}
Complex operator-(Complex a,Complex b){return Complex(a.x-b.x,a.y-b.y);}
Complex operator*(Complex a,Complex b){return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
Complex operator/(Complex a,int b){return Complex(a.x/b,a.y/b);}
void FFT(Complex *a,int f){
for(int i=;i<n;i++)if(i<R[i])swap(a[i],a[R[i]]);
for(int i=;i<n;i<<=){
Complex wn=Complex(cos(pi/i),f*sin(pi/i));
for(int j=;j<n;j+=(i<<)){
Complex w=Complex(,);
for(int k=;k<i;k++,w=w*wn){
Complex x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y;
}
}
}
if(!~f)for(int i=;i<n;i++)a[i]=a[i]/n;
}
int main(){
scanf("%d",&nn);
for(int i=;i<=nn;i++)scanf("%d",&num[i]);
for(n=;n<=;n<<=)L++;
for(int i=;i<n;i++)R[i]=(R[i>>]>>)|((i&)<<(L-));
Block=min(int(sqrt(nn)*),nn);
for(int i=;i<=nn;i++)block[i]=(i-)/Block+;
for(int i=;i<=nn;i++)cnt[block[i]][num[i]]++;
for(int I=;I<=block[nn];I++){
int L=lower_bound(block+,block++nn,I)-block,R=upper_bound(block+,block++nn,I)-block-;
for(int j=L;j<=R;j++){
cnt[I][num[j]]--;
for(int i=L;i<j;i++)
if(num[j]*-num[i]>=)ans+=cnt[I][num[j]*-num[i]];
}
}
for(int i=;i<=nn;i++)cnt[][num[i]]++;
for(int I=;I<=block[nn];I++){
int L=lower_bound(block+,block++nn,I)-block,R=upper_bound(block+,block++nn,I)-block-;
for(int i=L;i<=R;i++)cnt[][num[i]]--;
for(int j=L;j<=R;j++)
for(int i=L;i<j;i++)
if(num[j]*-num[i]>=)ans+=cnt[][num[j]*-num[i]];
}
for(int i=;i<=nn;i++)cnt[][num[i]]++;
for(int I=block[nn];I;I--){
int L=lower_bound(block+,block++nn,I)-block,R=upper_bound(block+,block++nn,I)-block-;
for(int i=L;i<=R;i++)cnt[][num[i]]--;
for(int k=L;k<=R;k++)
for(int j=k-;j>=L;j--)
if(num[j]*-num[k]>=)ans+=cnt[][num[j]*-num[k]];
}
for(int I=;I<=block[nn];I++){
for(int i=;i<n;i++)A[i].x=A[i].y=B[i].x=B[i].y=;
int L=lower_bound(block+,block++nn,I)-block,R=upper_bound(block+,block++nn,I)-block-;
for(int i=;i<L;i++)A[num[i]].x++;
for(int i=R+;i<=nn;i++)B[num[i]].x++;
FFT(A,),FFT(B,);
for(int i=;i<n;i++)C[i]=A[i]*B[i];
FFT(C,-);
for(int i=L;i<=R;i++)ans+=(long long)(C[num[i]*].x+0.2);
}
printf("%lld\n",ans);
}
分块FFT哦~
BZOJ 3509 分块FFT的更多相关文章
- [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- BZOJ 3509 [CodeChef] COUNTARI ——分块 FFT
分块大法好. 块内暴力,块外FFT. 弃疗了,抄SX队长$silvernebula$的代码 #include <map> #include <cmath> #include & ...
- bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...
- BZOJ 3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 883 Solved: 250[Submit][S ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)
题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...
- 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶
第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...
- 【做题】codechefCOUNTARI——分块FFT
记本题数组长度为\(n\),权值大小为\(m\). 首先,暴力显然是\(O(n^2)\)的. 先瞄一眼tag,然后发现这是FFT. 显然,问题的关键在于要满足i,j,k之间的位置关系.于是考虑分治FF ...
随机推荐
- 使用DOM解析XML文档
简单介绍一下使用DOM解析XML文档,解析XML文件案例: <?xml version="1.0" encoding="UTF-8"?> -< ...
- WinXP SSH连接不上虚拟机的解决方法
问题现象描述: 在VMWare中安装好linux系统后,选择桥接,从宿主机Windows上使用Putty, SSH Secure Shell等客户端工具连接linux上的ssh服务,客户端一直没有反应 ...
- Android进度条控件ProgressBar使用
ProgressBar有四种样式,圆形的(大,中,小)和直条形的(水平) 对应的style为 <LinearLayout xmlns:android="http://schemas.a ...
- (转)OpenLayers3基础教程——OL3基本概念
http://blog.csdn.net/gisshixisheng/article/details/46756275 OpenLayers3基础教程——OL3基本概念 从本节开始,我会陆陆续续的更新 ...
- 范畴论-一个单子(Monad)说白了不过就是自函子范畴上的一个幺半群而已
范畴即为结构:包含要素和转化. 范畴为高阶类型. 函子为高阶函数.函子的输入为态射.函子为建立在态射基础上的高阶函数.函子用于保持范畴间映射的结构.态射用于范畴内部的转换. 群为运算规则的约束. 自函 ...
- mvc重定向
出处 : https://www.cnblogs.com/lgxlsm/p/5441149.html .重定向方法:Redirect / RedirectToAction / RedirectToRo ...
- printf 打印较长字符
- BRAFT EDITOR富文本编辑器
https://braft.margox.cn/demos/basic 官方文档 import React from 'react' import Uploading from '../Upl ...
- scrapy-redis 之处理异常
今天心情不好 不想多打字 自己看注释吧 from scrapy.http import HtmlResponse from twisted.internet import defer from twi ...
- idea+MAVEN项目
一.首先创建一个maven项目 1.依次点击:File->New->Project 2.左侧面板选择maven(不要选择Create from archetype选项),如下图,点击Nex ...