Codeforces 757 D. Felicity's Big Secret Revealed 状压DP
The gym leaders were fascinated by the evolutions which took place at Felicity camp. So, they were curious to know about the secret behind evolving Pokemon.
The organizers of the camp gave the gym leaders a PokeBlock, a sequence of n ingredients. Each ingredient can be of type 0 or 1. Now the organizers told the gym leaders that to evolve a Pokemon of type k (k ≥ 2), they need to make a valid set of k cuts on the PokeBlock to get smaller blocks.
Suppose the given PokeBlock sequence is b0b1b2... bn - 1. You have a choice of making cuts at n + 1 places, i.e., Before b0, between b0 and b1, between b1 and b2, ..., between bn - 2 and bn - 1, and after bn - 1.
The n + 1 choices of making cuts are as follows (where a | denotes a possible cut):
| b0 | b1 | b2 | ... | bn - 2 | bn - 1 |
Consider a sequence of k cuts. Now each pair of consecutive cuts will contain a binary string between them, formed from the ingredient types. The ingredients before the first cut and after the last cut are wasted, which is to say they are not considered. So there will be exactly k - 1 such binary substrings. Every substring can be read as a binary number. Let m be the maximum number out of the obtained numbers. If all the obtained numbers are positive and the set of the obtained numbers contains all integers from 1 to m, then this set of cuts is said to be a valid set of cuts.
For example, suppose the given PokeBlock sequence is 101101001110 and we made 5 cuts in the following way:
10 | 11 | 010 | 01 | 1 | 10
So the 4 binary substrings obtained are: 11, 010, 01 and 1, which correspond to the numbers 3, 2, 1 and 1 respectively. Here m = 3, as it is the maximum value among the obtained numbers. And all the obtained numbers are positive and we have obtained all integers from 1 to m. Hence this set of cuts is a valid set of 5 cuts.
A Pokemon of type k will evolve only if the PokeBlock is cut using a valid set of k cuts. There can be many valid sets of the same size. Two valid sets of k cuts are considered different if there is a cut in one set which is not there in the other set.
Let f(k) denote the number of valid sets of k cuts. Find the value of
. Since the value of s can be very large, output smodulo 109 + 7.
The input consists of two lines. The first line consists an integer n (1 ≤ n ≤ 75) — the length of the PokeBlock. The next line contains the PokeBlock, a binary string of length n.
Output a single integer, containing the answer to the problem, i.e., the value of s modulo 109 + 7.
4
1011
10
In the first sample, the sets of valid cuts are:
Size 2: |1|011, 1|01|1, 10|1|1, 101|1|.
Size 3: |1|01|1, |10|1|1, 10|1|1|, 1|01|1|.
Size 4: |10|1|1|, |1|01|1|.
Hence, f(2) = 4, f(3) = 4 and f(4) = 2. So, the value of s = 10.
In the second sample, the set of valid cuts is:
Size 2: |1|0.
Hence, f(2) = 1 and f(3) = 0. So, the value of s = 1.
题意:
给定一个01串,一个有效的n切割定义如下:竖杠代表切割线,第一条竖杠前面的01串忽略,最后一条竖杠后面的01串忽略,将相邻竖杠夹住的01串转化成十进制数字
假设这些数字的最大值是m且这些数字囊括了1-m的所有数字,则称为一次有效切割。
问你方案数
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = +, M = 1e3+, mod = 1e9+, inf = 2e9;
int dp[N][(<<) + ];
int a[N],n;
char s[N];
int main() {
scanf("%d%s",&n,s+);
for(int i = ; i <= n; ++i) a[i] = s[i] - '';
for(int i = ; i <= n; ++i) {
dp[i][] = ;
for(int j = ; j < (<<); ++j) {
if(dp[i][j]) {
LL x = ;
for(int k = i+; k <= n; ++k) {
x += a[k];
if(x > ) break;
if(!x) continue;
dp[k][j|(<<(x-))] += dp[i][j];
dp[k][j|(<<(x-))] %= mod;
x *= ;
}
}
}
}
LL ans = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= ; ++j) ans = (ans + dp[i][(<<j)-])%mod;
}
cout<<ans<<endl;
return ;
}
Codeforces 757 D. Felicity's Big Secret Revealed 状压DP的更多相关文章
- 【codeforces 757D】Felicity's Big Secret Revealed
[题目链接]:http://codeforces.com/problemset/problem/757/D [题意] 给你一个01串; 让你分割这个01串; 要求2切..n+1切; 对于每一种切法 所 ...
- Codeforces Beta Round #8 C. Looking for Order 状压dp
题目链接: http://codeforces.com/problemset/problem/8/C C. Looking for Order time limit per test:4 second ...
- Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】
题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...
- Codeforces 1383C - String Transformation 2(找性质+状压 dp)
Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...
- Codeforces 744C Hongcow Buys a Deck of Cards 状压dp (看题解)
Hongcow Buys a Deck of Cards 啊啊啊, 为什么我连这种垃圾dp都写不出来.. 不是应该10分钟就该秒掉的题吗.. 从dp想到暴力然后gg, 没有想到把省下的红色开成一维. ...
- 【Codeforces】CF 165 E Compatible Numbers(状压dp)
题目 传送门:QWQ 分析 很难想到方向,但有方向了就很easy了. 我们如何减少不必要的计算? 如果我们知道了$ 100111 $的相容的数,$ 100101 $的相容数和他是完全一样的. 我们就靠 ...
- Codeforces Round #302 (Div. 1) C - Remembering Strings 状压dp
C - Remembering Strings 思路:最关键的一点是字符的个数比串的个数多. 然后就能状压啦. #include<bits/stdc++.h> #define LL lon ...
- 【Codeforces】Gym 101173B Bipartite Blanket 霍尔定理+状压DP
题意 给一张$n\times m$二分图,带点权,问有多少完美匹配子集满足权值和大于等于$t$ 这里有一个结论:对于二分图$\mathbb{A}$和$\mathbb{B}$集合,如果子集$A \in ...
- Codeforces Round #585 (Div. 2) E. Marbles (状压DP)
题目:https://codeforc.es/contest/1215/problem/E 题意:给你一个序列,你可以交换相邻的两个数,要达到一个要求,所有相同的数都相邻,问你交换次数最少是多少 思路 ...
随机推荐
- 解决sqlplus无法退格问题
# wget http://download.openpkg.org/components/cache/rlwrap/rlwrap-0.42.tar.gz # tar -zxf rlwrap-0. ...
- 【集合遍历-Java】
遍历List集合的三种方法 1.增强for循环 for(String str : list) {//其内部实质上还是调用了迭代器遍历方式,这种循环方式还有其他限制,不建议使用. System.out. ...
- jQuery的on绑定click和直接绑定click区别
状况之外 在之前的公司并没有遇到这个问题,也就没有深究.直到自己换了现在的公司,刚来第二天就开始写别人写到一半的项目,很无奈,不是原生就是jquery,由于项目急,已经来不及切换框架重新布局,只能继续 ...
- python 模块学习(二)
一.日志模块(logging ) 日志是一种追踪软件运行时所发生事件的方法 1.简单的日志编写(文件输出) import logging # 日志模块 # 日志配置,把日志内容存到文件中 loggin ...
- pwnable.kr uaf之wp
几乎都想要放弃了,感觉学了好久还是什么都不会,这个题好像很难的样子,有很多知识点需要补充一下: 1.[UAF]分配的内存释放后,指针没有因为内存释放而变为NULL,而是继续指向已经释放的内存.攻击者可 ...
- 在ubuntu18.04版本安装vscode
方式一:图形安装 1. 在ubuntu桌面找到应用中心 2. 在软件中心中,搜索Visual Studio Code 3. 在页面中就可以直接选择安装 方式二:命令安装 1. 从vscode官网下载最 ...
- python014 Python3 迭代器与生成器
Python3 迭代器与生成器迭代器迭代是Python最强大的功能之一,是访问集合元素的一种方式..迭代器是一个可以记住遍历的位置的对象.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结 ...
- PTA 04-树5 Root of AVL Tree (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree (25分) An AVL tree ...
- BZOJ3027 - [CEOI2004]Sweet
Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...
- 【随机化算法】codeforces Matrix God
http://codeforces.com/gym/101341 [题意] 给定三个方阵A,B,C,问AB=C是否成立? 方阵的规模最大为1000 [思路] 求AB的时间复杂度为n*n*n,会超时 左 ...