Codeforces 757 D. Felicity's Big Secret Revealed 状压DP
The gym leaders were fascinated by the evolutions which took place at Felicity camp. So, they were curious to know about the secret behind evolving Pokemon.
The organizers of the camp gave the gym leaders a PokeBlock, a sequence of n ingredients. Each ingredient can be of type 0 or 1. Now the organizers told the gym leaders that to evolve a Pokemon of type k (k ≥ 2), they need to make a valid set of k cuts on the PokeBlock to get smaller blocks.
Suppose the given PokeBlock sequence is b0b1b2... bn - 1. You have a choice of making cuts at n + 1 places, i.e., Before b0, between b0 and b1, between b1 and b2, ..., between bn - 2 and bn - 1, and after bn - 1.
The n + 1 choices of making cuts are as follows (where a | denotes a possible cut):
| b0 | b1 | b2 | ... | bn - 2 | bn - 1 |
Consider a sequence of k cuts. Now each pair of consecutive cuts will contain a binary string between them, formed from the ingredient types. The ingredients before the first cut and after the last cut are wasted, which is to say they are not considered. So there will be exactly k - 1 such binary substrings. Every substring can be read as a binary number. Let m be the maximum number out of the obtained numbers. If all the obtained numbers are positive and the set of the obtained numbers contains all integers from 1 to m, then this set of cuts is said to be a valid set of cuts.
For example, suppose the given PokeBlock sequence is 101101001110 and we made 5 cuts in the following way:
10 | 11 | 010 | 01 | 1 | 10
So the 4 binary substrings obtained are: 11, 010, 01 and 1, which correspond to the numbers 3, 2, 1 and 1 respectively. Here m = 3, as it is the maximum value among the obtained numbers. And all the obtained numbers are positive and we have obtained all integers from 1 to m. Hence this set of cuts is a valid set of 5 cuts.
A Pokemon of type k will evolve only if the PokeBlock is cut using a valid set of k cuts. There can be many valid sets of the same size. Two valid sets of k cuts are considered different if there is a cut in one set which is not there in the other set.
Let f(k) denote the number of valid sets of k cuts. Find the value of
. Since the value of s can be very large, output smodulo 109 + 7.
The input consists of two lines. The first line consists an integer n (1 ≤ n ≤ 75) — the length of the PokeBlock. The next line contains the PokeBlock, a binary string of length n.
Output a single integer, containing the answer to the problem, i.e., the value of s modulo 109 + 7.
4
1011
10
In the first sample, the sets of valid cuts are:
Size 2: |1|011, 1|01|1, 10|1|1, 101|1|.
Size 3: |1|01|1, |10|1|1, 10|1|1|, 1|01|1|.
Size 4: |10|1|1|, |1|01|1|.
Hence, f(2) = 4, f(3) = 4 and f(4) = 2. So, the value of s = 10.
In the second sample, the set of valid cuts is:
Size 2: |1|0.
Hence, f(2) = 1 and f(3) = 0. So, the value of s = 1.
题意:
给定一个01串,一个有效的n切割定义如下:竖杠代表切割线,第一条竖杠前面的01串忽略,最后一条竖杠后面的01串忽略,将相邻竖杠夹住的01串转化成十进制数字
假设这些数字的最大值是m且这些数字囊括了1-m的所有数字,则称为一次有效切割。
问你方案数
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = +, M = 1e3+, mod = 1e9+, inf = 2e9;
int dp[N][(<<) + ];
int a[N],n;
char s[N];
int main() {
scanf("%d%s",&n,s+);
for(int i = ; i <= n; ++i) a[i] = s[i] - '';
for(int i = ; i <= n; ++i) {
dp[i][] = ;
for(int j = ; j < (<<); ++j) {
if(dp[i][j]) {
LL x = ;
for(int k = i+; k <= n; ++k) {
x += a[k];
if(x > ) break;
if(!x) continue;
dp[k][j|(<<(x-))] += dp[i][j];
dp[k][j|(<<(x-))] %= mod;
x *= ;
}
}
}
}
LL ans = ;
for(int i = ; i <= n; ++i) {
for(int j = ; j <= ; ++j) ans = (ans + dp[i][(<<j)-])%mod;
}
cout<<ans<<endl;
return ;
}
Codeforces 757 D. Felicity's Big Secret Revealed 状压DP的更多相关文章
- 【codeforces 757D】Felicity's Big Secret Revealed
[题目链接]:http://codeforces.com/problemset/problem/757/D [题意] 给你一个01串; 让你分割这个01串; 要求2切..n+1切; 对于每一种切法 所 ...
- Codeforces Beta Round #8 C. Looking for Order 状压dp
题目链接: http://codeforces.com/problemset/problem/8/C C. Looking for Order time limit per test:4 second ...
- Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】
题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...
- Codeforces 1383C - String Transformation 2(找性质+状压 dp)
Codeforces 题面传送门 & 洛谷题面传送门 神奇的强迫症效应,一场只要 AC 了 A.B.D.E.F,就一定会把 C 补掉( 感觉这个 C 难度比 D 难度高啊-- 首先考虑对问题进 ...
- Codeforces 744C Hongcow Buys a Deck of Cards 状压dp (看题解)
Hongcow Buys a Deck of Cards 啊啊啊, 为什么我连这种垃圾dp都写不出来.. 不是应该10分钟就该秒掉的题吗.. 从dp想到暴力然后gg, 没有想到把省下的红色开成一维. ...
- 【Codeforces】CF 165 E Compatible Numbers(状压dp)
题目 传送门:QWQ 分析 很难想到方向,但有方向了就很easy了. 我们如何减少不必要的计算? 如果我们知道了$ 100111 $的相容的数,$ 100101 $的相容数和他是完全一样的. 我们就靠 ...
- Codeforces Round #302 (Div. 1) C - Remembering Strings 状压dp
C - Remembering Strings 思路:最关键的一点是字符的个数比串的个数多. 然后就能状压啦. #include<bits/stdc++.h> #define LL lon ...
- 【Codeforces】Gym 101173B Bipartite Blanket 霍尔定理+状压DP
题意 给一张$n\times m$二分图,带点权,问有多少完美匹配子集满足权值和大于等于$t$ 这里有一个结论:对于二分图$\mathbb{A}$和$\mathbb{B}$集合,如果子集$A \in ...
- Codeforces Round #585 (Div. 2) E. Marbles (状压DP)
题目:https://codeforc.es/contest/1215/problem/E 题意:给你一个序列,你可以交换相邻的两个数,要达到一个要求,所有相同的数都相邻,问你交换次数最少是多少 思路 ...
随机推荐
- Linux文件属性和压缩解压
目 录 第1章 Linux系统文件的属性 1 1.1 命令ls 1 1.2 inode 2 1.3 文件属性 2 1.4 env命令 2 1.5 注意: 2 第2章 ...
- vue 页面过渡效果
App.vue 模板 <template> <div id="app"> <transition :name="transition&quo ...
- windows下安装rabbitmq以及php扩展amqp
先安装RabbitMQ 安装Erlang 下载地址http://www.erlang.org/downloads 我选的是64位 这个根据自己情况下载,双击安装之 安装RabbitMQ 下载地址ht ...
- 有上下界的网络流 loj115 loj116 loj 117
参考文章 无源汇有上下界的可行流 有源汇有上下界的最大流 有源汇有上下界的最小流 无源汇有上下界可行流 以 loj115 为例. 剥离出必要边与自由边. #include <iostream&g ...
- docker改变镜像源
sudo echo “DOCKER_OPTS=\”\$DOCKER_OPTS –registry-mirror=http://your-id.m.daocloud.io -d\”” >> ...
- @JoinColumn 匹配关联多个字段
两张表结构如下 TABLE_A: ID, COLA1, COLA2 TABLE_B: ID, A_ID, COLB1, COLB2 A和B是一对多的关系. 我在B的BEAN上面,通过Anotation ...
- centos下wget时提示unable to resolve host address ...
网络正常的情况,可以查看/etc/resolv.conf [root@localhost ~]# more /etc/resolv.conf # Generated by NetworkManager ...
- Google SPDY
SPDY(读作“SPeeDY”)是Google开发的基于TCP的应用层协议,用以最小化网络延迟,提升网络速度,优化用户的网络使用体验.SPDY并不是一种用于替代HTTP的协议,而是对HTTP协议的增强 ...
- gitlab上fork的项目如何获取源更新
1.添加上游项目地址 git remote add upstream URL 2.查看远程仓库信息 可以看到上游项目地址已经添加进来了 git remote -v 3.获取上游项目更新 获取到的更新会 ...
- ArrayList源码分析超详细(转载)
ArrayList源码分析超详细 ArrayList源码分析超详解 想要分析下源码是件好事,但是如何去进行分析呢?以我的例子来说,我进行源码分析的过程如下几步: 找到类:利用 IDEA 找到所需要 ...