题意:有n只青蛙,m个石头(围成圆圈)。第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少?

析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计算所有的等差数列,但是好像如果全算,那么就可能会有重复,所以我们考虑用容斥原理。

先把 m 的所有因数都求出来,然后把 gcd(ai, m),都标记一下,然后再去计算,多了就减去,少了就加。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
vector<int> v;
int f[maxn], num[maxn]; int main(){
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d %d", &n, &m);
v.clear();
for(int i = 1; i*i <= m; ++i) if(m % i == 0){
v.push_back(i);
if(i*i != m && i != 1) v.push_back(m/i);
}
sort(v.begin(), v.end());
memset(num, 0, sizeof num);
memset(f, 0, sizeof f);
int x;
for(int i = 0; i < n; ++i){
scanf("%d", &x);
x = gcd(x, m);
for(int j = 0; j < v.size(); ++j) if(v[j] % x == 0){
f[j] = 1;
}
}
LL ans = 0;
for(int i = 0; i < v.size(); ++i) if(f[i] != num[i]){
int tmp = m / v[i] - 1;
ans += (LL)m * tmp / 2 * (f[i] - num[i]);
tmp = f[i] - num[i];
for(int j = 0; j < v.size(); ++j) if(v[j] % v[i] == 0){
num[j] += tmp;
}
}
printf("Case #%d: %I64d\n", kase, ans);
}
return 0;
}

HDU 5514 Frogs (数论容斥)的更多相关文章

  1. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  2. POJ 1150 The Last Non-zero Digit 数论+容斥

    POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...

  3. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  4. hdu 5514 Frogs 容斥思想+gcd 银牌题

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  5. HDU 4135 Co-prime(容斥+数论)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. 数论 + 容斥 - HDU 4059 The Boss on Mars

    The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...

  7. 数论 + 容斥 - HDU 1695 GCD

    problem's Link mean 给定五个数a,b,c,d,k,从1~a中选一个数x,1~b中选一个数y,使得gcd(x,y)=k. 求满足条件的pair(x,y)数. analyse 由于b, ...

  8. HDU - 2204 Eddy's爱好 (数论+容斥)

    题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...

  9. HDU 5514 Frogs

    Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...

随机推荐

  1. 事件和委托:第 5 页 委托、事件与Observer设计模式

    原文发布时间为:2008-11-01 -- 来源于本人的百度文章 [由搬家工具导入] 委托、事件与Observer设计模式 范例说明 上面的例子已不足以再进行下面的讲解了,我们来看一个新的范例,因为之 ...

  2. Linux内核设计与实现——读书笔记2:进程管理

    1.进程: (1)处于执行期的程序,但不止是代码,还包括各种程序运行时所需的资源,实际上进程是正在执行的 程序的实时结果. (2)程序的本身并不是进程,进程是处于执行期的程序及其相关资源的总称. (3 ...

  3. CritterAI与Recast Navigation寻路

    版权声明:本文为博主吴欣伟原创文章,未经博主允许不得转载. 前言 这篇文章写于去年,由于工作需要,故写出这个研究文档,发现网上有关此寻路库的中文资源十分稀少,故发布出来与诸位共享交流,如文中有不对之处 ...

  4. vagrant的学习 之 优化

    vagrant的学习 之 优化 一.修改虚拟机名字: 默认的虚拟机的名字很长:study_default_1535505004652_97747. (1)打开Vagrantfile文件:(2)找到: ...

  5. [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)

    4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 673  Solved: 261[Submit][ ...

  6. MySQL中的数据类型的长度范围和显示宽度(转)

    长度范围是随数据类型就已经是固定的值,而显示宽度与长度范围无关. 以下是每个整数类型的存储和范围(来自MySQL手册) 类型 字节 最小值 最大值 (带符号的/无符号的) (带符号的/无符号的) TI ...

  7. MySQL入门笔记 - 视图

    参考书籍<MySQL入门很简单> 1.视图定义 视图是从一个或者多个表中导出来的虚拟的表,透过这个窗口可以看到系统专门提供的数据,使用户可以只关心对自己有用的数据,方便用户对数据操作,同时 ...

  8. influxDB系列(二)

    来源于我在一个influxDB的qq交流群中的提问, 然后有个人 提了一个问题---->触发了我的思考!! :) 哈哈 自己的每一次说出一个回答,都是一次新的思考,也都进行了一些查阅资料,思考, ...

  9. Puppet基于Master/Agent模式实现LNMP平台部署

    前言 随着IT行业的迅猛发展,传统的运维方式靠大量人力比较吃力,运维人员面对日益增长的服务器和运维工作,不得不把很多重复的.繁琐的工作利用自动化处理.前期我们介绍了运维自动化工具ansible的简单应 ...

  10. 用Visual Studio高版本号打开低版本号的project,转换时出现错误:fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏

    解决方法是: 在电脑里面搜索发现   C:\Program Files\Microsoft Visual Studio 10.0\VC\bin   C:\Windows\winsxs\x86_netf ...