题意:有n只青蛙,m个石头(围成圆圈)。第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少?

析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计算所有的等差数列,但是好像如果全算,那么就可能会有重复,所以我们考虑用容斥原理。

先把 m 的所有因数都求出来,然后把 gcd(ai, m),都标记一下,然后再去计算,多了就减去,少了就加。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
vector<int> v;
int f[maxn], num[maxn]; int main(){
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d %d", &n, &m);
v.clear();
for(int i = 1; i*i <= m; ++i) if(m % i == 0){
v.push_back(i);
if(i*i != m && i != 1) v.push_back(m/i);
}
sort(v.begin(), v.end());
memset(num, 0, sizeof num);
memset(f, 0, sizeof f);
int x;
for(int i = 0; i < n; ++i){
scanf("%d", &x);
x = gcd(x, m);
for(int j = 0; j < v.size(); ++j) if(v[j] % x == 0){
f[j] = 1;
}
}
LL ans = 0;
for(int i = 0; i < v.size(); ++i) if(f[i] != num[i]){
int tmp = m / v[i] - 1;
ans += (LL)m * tmp / 2 * (f[i] - num[i]);
tmp = f[i] - num[i];
for(int j = 0; j < v.size(); ++j) if(v[j] % v[i] == 0){
num[j] += tmp;
}
}
printf("Case #%d: %I64d\n", kase, ans);
}
return 0;
}

HDU 5514 Frogs (数论容斥)的更多相关文章

  1. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  2. POJ 1150 The Last Non-zero Digit 数论+容斥

    POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...

  3. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  4. hdu 5514 Frogs 容斥思想+gcd 银牌题

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  5. HDU 4135 Co-prime(容斥+数论)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  6. 数论 + 容斥 - HDU 4059 The Boss on Mars

    The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...

  7. 数论 + 容斥 - HDU 1695 GCD

    problem's Link mean 给定五个数a,b,c,d,k,从1~a中选一个数x,1~b中选一个数y,使得gcd(x,y)=k. 求满足条件的pair(x,y)数. analyse 由于b, ...

  8. HDU - 2204 Eddy's爱好 (数论+容斥)

    题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...

  9. HDU 5514 Frogs

    Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...

随机推荐

  1. Codeforces917D. Stranger Trees

    $n \leq 100$的完全图,对每个$0 \leq K \leq n-1$问生成树中与给定的一棵树有$K$条公共边的有多少个,答案$mod \ \ 1e9+7$. 对这种“在整体中求具有某些特性的 ...

  2. zookeeper学习0

    参考文献: 5分钟让你了解 ZooKeeper 的功能和原理 Zookeeper专题——1.分布式事务(a概述) Zookeeper专题——2.分布式锁-基于Zookeeper的分布式锁

  3. SystemInformationRequestHandlers

    SystemInformationRequestHandlers - Solr Wiki Search: Solr Wiki Login SystemInformationRequestHandler ...

  4. P1420 最长连号

    洛谷——P1420 最长连号 题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第 ...

  5. 前后端分离项目shiro的未登录和权限不足

    在前后端分离的项目中.前端代码和后端代码几乎不在同一个目录下,甚至不是在一台服务器上:我这个项目部署在linux.同一台服务器,不同目录下:所有的页面跳转由前台路由,后台只是提供返回的数据: 干货↓  ...

  6. PCRE函数简介和使用示例

    PCRE是一个NFA正则引擎,不然不能提供完全与Perl一致的正则语法功能.但它同时也实现了DFA,只是满足数学意义上的正则. PCRE提供了19个接口函数,为了简单介绍,使用PCRE内带的测试程序( ...

  7. R-Tree空间索引算法的研究历程和最新进展分析

    转自原文 R-Tree空间索引算法的研究历程和最新进展分析,2008 摘要:本文介绍了空间索引的概念.R-Tree数据结构和R-Tree空间索引的算法描述,并从R-Tree索引技术的优缺点对R-Tre ...

  8. 在Studio中使用Access数据库时,提示“未在本地计算机上注册“Microsoft.ACE.OLEDB.12.0”提供程序”

    错误提示:

  9. HDOJ 5416 CRB and Tree DFS

    CRB and Tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  10. idea、jdk、eclispe中空main方法的线程数量不一样,why?

    測试代码: public class Test {     public static void main(String[] args) {         System.out.println(Th ...