SPOJ MIXTURES 区间dp
Harry Potter has n mixtures in front of him, arranged in a row. Each mixture has one of 100 different colors (colors have numbers from 0 to 99).
He wants to mix all these mixtures together. At each step, he is going to take two mixtures that stand next to each other and mix them together, and put the resulting mixture in their place.
When mixing two mixtures of colors a and b, the resulting mixture will have the color (a+b) mod 100.
Also, there will be some smoke in the process. The amount of smoke generated when mixing two mixtures of colors a and b is a*b.
Find out what is the minimum amount of smoke that Harry can get when mixing all the mixtures together.
Input
There will be a number of test cases in the input.
The first line of each test case will contain n, the number of mixtures, 1 <= n <= 100.
The second line will contain n integers between 0 and 99 - the initial colors of the mixtures.
Output
For each test case, output the minimum amount of smoke.
Example
Input:
2
18 19
3
40 60 20 Output:
342
2400
In the second test case, there are two possibilities:
- first mix 40 and 60 (smoke: 2400), getting 0, then mix 0 and 20 (smoke: 0); total amount of smoke is 2400
- first mix 60 and 20 (smoke: 1200), getting 80, then mix 40 and 80 (smoke: 3200); total amount of smoke is 4400
The first scenario is a much better way to proceed.
题解
这是一道傻逼区间dp,就没啥难度,预处理一下区间和即可
详见代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#define MAX_N 105
#define INF 0x3f3f3f3f
using namespace std; int dp[MAX_N][MAX_N];
int sum[MAX_N]; int n;
int a[MAX_N]; int main() {
cin.sync_with_stdio(false);
while (cin >> n) {
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
dp[i][j] = INF;
memset(sum, 0, sizeof(sum));
for (int i = 1; i <= n; i++) {
cin >> a[i];
dp[i][i] = 0;
sum[i] = sum[i - 1] + a[i];
}
for (int i = 1; i <= n; i++)
for (int j = 1; j + i <= n; j++)
for (int k = j; k < j + i; k++)
dp[j][j + i] = min(dp[j][j + i], dp[j][k] + dp[k + 1][j + i] +
((sum[k] - sum[j - 1]) % 100) *
((sum[j + i] - sum[k]) % 100));
cout << dp[1][n] << endl;
}
return 0;
}
SPOJ MIXTURES 区间dp的更多相关文章
- 【BZOJ-4380】Myjnie 区间DP
4380: [POI2015]Myjnie Time Limit: 40 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 162 Solved: ...
- 【POJ-1390】Blocks 区间DP
Blocks Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5252 Accepted: 2165 Descriptio ...
- 区间DP LightOJ 1422 Halloween Costumes
http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...
- BZOJ1055: [HAOI2008]玩具取名[区间DP]
1055: [HAOI2008]玩具取名 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1588 Solved: 925[Submit][Statu ...
- poj2955 Brackets (区间dp)
题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...
- HDU5900 QSC and Master(区间DP + 最小费用最大流)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...
- BZOJ 1260&UVa 4394 区间DP
题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...
- 区间dp总结篇
前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...
- Uva 10891 经典博弈区间DP
经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...
随机推荐
- PAT (Advanced Level) Practise - 1098. Insertion or Heap Sort (25)
http://www.patest.cn/contests/pat-a-practise/1098 According to Wikipedia: Insertion sort iterates, c ...
- 带你进入Angular js的大门
首先需要指出什么是angular js,其实说白了angular js就是Javascript的一个类库,我们使用这个类库可以很容易的创建web页面.双向绑定是angular js其中的一个重要特征, ...
- jquery html5 实现placeholder 兼容password ie6
<style type="text/css"> /* 设置提示文字颜色 */ ::-webkit-input-placeholder { color: #838383; ...
- Bzoj 1257 [CQOI2007]余数之和 (整除分块)
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...
- [LUOGU] P2759 奇怪的函数
题目描述 使得 x^x x x 达到或超过 n 位数字的最小正整数 x 是多少? 输入输出格式 输入格式: 一个正整数 n 输出格式: 使得 x^xx x 达到 n 位数字的最小正整数 x 输入输出样 ...
- 编译openwrt_MT7688_hiwooya
参考链接: 无涯论坛地址: http://www.hi-wooya.com/forum.php openwrt官网地址:https://openwrt.org/zh-cn/doc/howto/buil ...
- shell相关指令介绍$*和$#以及$?和if [[ ! -z $1 ]]
$#,脚本运行时后跟的参数个数 #! /bin/bash case "$#" in 0) printf "Enter a number: " read n=$R ...
- ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze
262144K There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...
- Linux基础命令详解-3
本篇详解的命令有以下15个 1.chown 更改文件和文件夹的用户和组所有权 2.useradd 创建一个新用户 3.userdel 删除一个用户 4.usermod 修改用户帐户 5.echo 打印 ...
- Redis学习笔记01---配置文件
1.配置文件用法 启动redis的时候指定配置⽂件路径: ./redis-server /path/to/redis.conf 不指定配置⽂件的时候使⽤内置配置⽂件启动,此⽅法仅适⽤于开发和测试. 2 ...