Goldbach
Description:
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states:
Every even integer greater than 2 can be expressed as the sum of two primes.
The actual verification of the Goldbach conjecture shows that even numbers below at least 1e14 can be expressed as a sum of two prime numbers.
Many times, there are more than one way to represent even numbers as two prime numbers.
For example, 18=5+13=7+11, 64=3+61=5+59=11+53=17+47=23+41, etc.
Now this problem is asking you to divide a postive even integer n (2<n<2^63) into two prime numbers.
Although a certain scope of the problem has not been strictly proved the correctness of Goldbach's conjecture, we still hope that you can solve it.
If you find that an even number of Goldbach conjectures are not true, then this question will be wrong, but we would like to congratulate you on solving this math problem that has plagued humanity for hundreds of years.
Input:
The first line of input is a T means the number of the cases.
Next T lines, each line is a postive even integer n (2<n<2^63).
Output:
The output is also T lines, each line is two number we asked for.
T is about 100.
本题答案不唯一,符合要求的答案均正确
样例输入
1
8
样例输出
3 5
题目大意就是给你一个偶数,让你把偶数分成两个素数和,输出任意一组答案即可
打表发现可能的分解情况中,较小的那个素数非常小,最大不过在一万左右
所以现在问题就变成了如何快速的判断一个数是否为素数
所以要用“Miller-Rabin素数检测算法”,具体参加如下博客
https://blog.csdn.net/zengaming/article/details/51867240
要注意的是题目给的数非常大,即使用long long存稍微算一下加法也会炸
所以要用unsigned long long 运算,输出用 %llu
#include <cstdio>
#include <cstdlib>
#include<iostream>
#define N 10000
using namespace std;
typedef unsigned long long ll;
ll ModMul(ll a,ll b,ll n)//快速积取模 a*b%n
{
ll ans=;
while(b)
{
if(b&)
ans=(ans+a)%n;
a=(a+a)%n;
b>>=;
}
return ans;
}
ll ModExp(ll a,ll b,ll n)//快速幂取模 a^b%n
{
ll ans=;
while(b)
{
if(b&)
ans=ModMul(ans,a,n);
a=ModMul(a,a,n);
b>>=;
}
return ans;
}
bool miller_rabin(ll n)//Miller-Rabin素数检测算法
{
ll i,j,a,x,y,t,u,s=;
if(n==)
return true;
if(n<||!(n&))
return false;
for(t=,u=n-;!(u&);t++,u>>=);//n-1=u*2^t
for(i=;i<s;i++)
{
a=rand()%(n-)+;
x=ModExp(a,u,n);
for(j=;j<t;j++)
{
y=ModMul(x,x,n);
if(y==&&x!=&&x!=n-)
return false;
x=y;
}
if(x!=)
return false;
}
return true;
} int main()
{
ll n;
ll t;
scanf("%llu",&t);
while(t--)
{
scanf("%llu",&n); for(ll i=;i<N;i++)
if(miller_rabin(i)&&miller_rabin(n-i))
{
printf("%llu %llu\n",i,n-i);
break;
} }
return ;
}
Goldbach的更多相关文章
- Goldbach's Conjecture
Goldbach's Conjecture Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I ...
- Poj 2262 / OpenJudge 2262 Goldbach's Conjecture
1.Link: http://poj.org/problem?id=2262 http://bailian.openjudge.cn/practice/2262 2.Content: Goldbach ...
- poj 2262 Goldbach's Conjecture(素数筛选法)
http://poj.org/problem?id=2262 Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total ...
- HDOJ 1397 Goldbach's Conjecture(快速筛选素数法)
Problem Description Goldbach's Conjecture: For any even number n greater than or equal to 4, there e ...
- Goldbach's Conjecture(哥德巴赫猜想)
Goldbach's Conjecture Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
- POJ 2262 Goldbach's Conjecture(素数相关)
POJ 2262 Goldbach's Conjecture(素数相关) http://poj.org/problem?id=2262 题意: 给你一个[6,1000000]范围内的偶数,要你将它表示 ...
- UVa 543 - Goldbach's Conjecture
题目大意:给一个偶数,判断是否是两个素数的和. 先用sieve方法生成一个素数表,然后再进行判断即可. #include <cstdio> #include <vector> ...
- 【LightOJ1259】Goldbach`s Conjecture(数论)
[LightOJ1259]Goldbach`s Conjecture(数论) 题面 Vjudge T组询问,每组询问是一个偶数n 验证哥德巴赫猜想 回答n=a+b 且a,b(a<=b)是质数的方 ...
- POJ 2262 Goldbach's Conjecture (打表)
题目链接: https://cn.vjudge.net/problem/POJ-2262 题目描述: In 1742, Christian Goldbach, a German amateur mat ...
随机推荐
- 使用Cordova将您的前端JavaScript应用打包成手机原生应用
假设我用JavaScript和HTML开发了一个前端应用,我想把该应用打包成能直接在手机上安装和运行(不通过浏览器)的原生应用,例如像下面这样.对应用的用户来说,他们得到的用户体验和真正的用Andro ...
- 联想e431笔记本更改硬盘模式bios设置的详细教程
用硬盘安装系统,就要进入bios,将硬盘改为第一启动项即可重装系统.不同品牌的电脑,它的bios设置方法也就不同.那么,联想e431笔记本要如何更改硬盘模式呢?今天U大侠小编就和大家分享联想e431笔 ...
- hash 散列表
一个字符串的hash值: •现在我们希望找到一个hash函数,使得每一个字符串都能够映射到一个整数上 •比如hash[i]=(hash[i-1]*p+idx(s[i]))%mod •字符串:abc,b ...
- CS193p Lecture 8 - Protocols, Blocks and Animation
一.协议(Protocols) 1. 声明协议 @protocol Foo <Xyzzy, NSObject> // ... @optinal // @required //... @en ...
- 如何正确入门Windows系统下驱动开发领域?
[作者]猪头三个人网站 :http://www.x86asm.com/ [序言]很多人都对驱动开发有兴趣,但往往找不到正确的学习方式.当然这跟驱动开发的本土化资料少有关系.大多学的驱动开发资料都以英文 ...
- ios retain copy assign相关
assign: 简单赋值,不更改索引计数copy: 建立一个索引计数为1的对象,然后释放旧对象retain:释放旧的对象,将旧对象的值赋予输入对象,再提高输入对象的索引计数为1 Copy其实是建立了一 ...
- http post get 同步异步
下面首先介绍一下一些基本的概念---同步请求,异步请求,GET请求,POST请求. 1.同步请求从因特网请求数据,一旦发送同步请求,程序将停止用户交互,直至服务器返回数据完成,才可以进行下一步操作.也 ...
- (40)zabbix监控web服务器访问性能
zabbix web监控介绍 在host列可以看到web(0),在以前的版本这项是独立出来的,这个主要实现zabbix对web性能的监控,通过它可以了解web站点的可用性以及性能. 最终将各项指标绘制 ...
- 微信小程序 wx.request POST请求------中文乱码问题
问题: 一个简单的表单,提交后台返回数据“提交成功”. 以为没问题了,但是没过多久后台小哥就问为啥那么多乱码,找了很久原因,发现在提交的时候就已经乱码了. 嗯,前端问题,然后测试GET/POST方法. ...
- OpennSSL之基本了解
HTTPS是一种协议,等于HTTP+TLS(由于历史原因,SSL3.0之后就被TLS1.0替代了).openssl是一套开源工具集,主要有两个特性: 实现了ssl2,ssl3,TLSv1,TLSv1. ...