1、准备工作

1.1 确保GPU驱动已经安装

lspci | grep -i nvidia 通过此命令可以查看GPU信息,测试机已经安装GPU驱动
nvidia-smi 可以查看英伟达显卡信息

1.2 确保gcc安装

可以通过gcc -v 查看,如果没有安装需要安装

1.3 确保安装open-ssh

如果没有安装可以通过 yum install openssh-server 安装
1.4 确保安装kernel
 sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

2、安装CUDA工具包

To use TensorFlow with NVIDIA GPUs, the first step is to install the CUDA Toolkit.
备注:测试机选用的是CUDA 8.0,不要使用9.x 有坑

3、安装GPU加速器cuDNN

安装完CUDA就可以安装 cuDNN .
备注:这个地方要选用与CUDA版本匹配的加速器;测试机选用的是:Download cuDNN v6.0 (April 27, 2017), for CUDA 8.0,安装步骤如下图所示:

4、安装或更新pip(如果有需要的话,如果已经有了,可以选择性跳过)

TensorFlow itself can be installed using the pip package manager. First, make sure that your system has pip installed and updated:
$ sudo apt-get install python-pip python-dev
$ pip install --upgrade pip

5、安装TensorFlow

Run the following command to install the TensorFlow Python package using pip:
$ pip install --upgrade tensorflow-gpu

6、测试安装是否成功

To test the installation, open an interactive Python shell and import the TensorFlow module:
 
Python 3.5.3 (default, Jun 23 2017, 16:12:41)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> sess = tf.Session()
2017-07-12 19:24:14.030098: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-07-12 19:24:14.030833: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties:
name: Tesla M40 24GB
major: 5 minor: 2 memoryClockRate (GHz) 1.112
pciBusID 0000:00:06.0
Total memory: 22.40GiB
Free memory: 22.29GiB
2017-07-12 19:24:14.030855: I tensorflow/core/common_runtime/gpu/gpu_device.cc:961] DMA: 0
2017-07-12 19:24:14.030867: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: Y
2017-07-12 19:24:14.030882: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla M40 24GB, pci bus id: 0000:00:06.0)
>>> hello_world = tf.constant("Hello, TensorFlow!")
>>> print (sess.run(hello_world))
b'Hello, TensorFlow!'
>>> print (sess.run(tf.constant(123)*tf.constant(456)))
56088
>>>
参考链接

tensorflow with gpu 环境配置的更多相关文章

  1. 深度学习 GPU环境 Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6 环境配置

    本节详细说明一下深度学习环境配置,Ubuntu 16.04 + Nvidia GTX 1080 + Python 3.6 + CUDA 9.0 + cuDNN 7.1 + TensorFlow 1.6 ...

  2. NXP S32V eiq_auto tensorflow offline tool 环境配置

    NXP S32V eiq_auto tensorflow offline tool 环境配置 完成cnn模型eiq移植的第一步 1.安装conda 下载.sh bash Anaconda3-5.3.1 ...

  3. cuda cudnn anaconda gcc tensorflow 安装及环境配置

    1.首先,默认你已经装了适合你的显卡的nvidia驱动. 到  http://www.nvidia.com/Download/index.aspx 搜索你的显卡需要的驱动型号 那么接下来就是cuda的 ...

  4. lightGBM gpu环境配置

    推荐先看一手官方的Installation Guide.我用的是ubuntu 16.04,一些要求如下图: 主要是OpenCL以及libboost两个环境的要求. (1) OpenCL的安装.我这里之 ...

  5. 【适合N卡独显电脑的环境配置】Tensorflow教程-Windows 10下安装tensorflow 1.5.0 GPU with Anaconda

    注意: 1.目前Anaconda 更新原命令activate tensorflow 改为 conda activate tensorflow 2. 目前windows with anaconda 可以 ...

  6. 深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow

    深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow 最近在公司做深度学习相关的学习和实验,原来一直 ...

  7. 深度学习主机环境配置: Ubuntu16.04+GeForce GTX 1080+TensorFlow

    接上文<深度学习主机环境配置: Ubuntu16.04+Nvidia GTX 1080+CUDA8.0>,我们继续来安装 TensorFlow,使其支持GeForce GTX 1080显卡 ...

  8. 转:ubuntu 下GPU版的 tensorflow / keras的环境搭建

    http://blog.csdn.net/jerr__y/article/details/53695567 前言:本文主要介绍如何在 ubuntu 系统中配置 GPU 版本的 tensorflow 环 ...

  9. Google TensorFlow for GPU安装、配置大坑

    Google TensorFlow for GPU安装.配置大坑 从本周一开始(12.05),共4天半的时间,终于折腾好Google TensorFlow for GPU版本,其间跳坑无数,摔得遍体鳞 ...

随机推荐

  1. redis主从集群搭建

    一.安装redis 首先登陆官网下载压缩包,我安装的是最新版本5.X,下载地址http://download.redis.io/releases/redis-5.0.2.tar.gz. 进入文件所在目 ...

  2. FZu Problem 2233 ~APTX4869 (并查集 + sort)

    题目链接: FZu Problem 2233 ~APTX4869 题目描述: 给一个n*n的矩阵,(i, j)表示第 i 种材料 和 第 j 种材料的影响值,这个矩阵代表这n个物品之间的影响值.当把这 ...

  3. Lightoj 1044 - Palindrome Partitioning (DP)

    题目链接: Lightoj  1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...

  4. 146 LRU Cache 最近最少使用页面置换算法

    设计和实现一个  LRU(最近最少使用)缓存 数据结构,使它应该支持以下操作: get 和 put .get(key) - 如果密钥存在于缓存中,则获取密钥的值(总是正数),否则返回 -1.put(k ...

  5. springboot 配置Ehcache

    Ehcache的基本配置说明我就不说了.小编记录一下在springboot中使用Ehcache的使用方法. 第一步:在classpath下引入配置文件ehcache.xml 代码如下: <ehc ...

  6. P2044 随机数生成器

    链接:https://www.luogu.org/problem/show?pid=2044#sub 题目描述 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linea ...

  7. Git-往返github和本地

    将GitHub仓库Test弄到本地 本地新建文件夹Test 右击运行gitbash 在gitbash中输入git init 在github 仓库选择clone or download 复制链接http ...

  8. Thrift入门及Java实例演示【转】

    概述 Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发.它结合了功能强大的软件堆栈和代码生成引擎,以构建在 C++.Java.Python.PHP.Ruby.Erlang.Perl.Ha ...

  9. Javaweb学习笔记9—过滤器

      今天来讲javaweb的第9阶段学习.   过滤器,我在本次的思维导图中将过滤器和监听器放在一起总结了,监听器比较简单就不单独写了.   老规矩,首先先用一张思维导图来展现今天的博客内容.     ...

  10. Win2D 入门教程 VB 中文版 - 防止内存泄漏

    避免内存泄漏 本文从微软官方文档翻译 http://microsoft.github.io/Win2D/html/RefCycles.htm 如果文档有问题,可以在 https://github.co ...