在利用gridseachcv进行调参时,其中关于scoring可以填的参数在SKlearn中没有写清楚,就自己找了下,具体如下:

parameters = {'eps':[0.3,0.4,0.5,0.6], 'min_samples':[20,30,40]}
db = DBSCAN(metric='cosine', algorithm='brute').fit(xx)
grid = GridSearchCV(db, parameters, cv=5, scoring='adjusted_rand_score')
Scoring Function Comment
Classification    
‘accuracy’ metrics.accuracy_score  
‘average_precision’ metrics.average_precision_score  
‘f1’ metrics.f1_score for binary targets
‘f1_micro’ metrics.f1_score micro-averaged
‘f1_macro’ metrics.f1_score macro-averaged
‘f1_weighted’ metrics.f1_score weighted average
‘f1_samples’ metrics.f1_score by multilabel sample
‘neg_log_loss’ metrics.log_loss requires predict_proba support
‘precision’ etc. metrics.precision_score suffixes apply as with ‘f1’
‘recall’ etc. metrics.recall_score suffixes apply as with ‘f1’
‘roc_auc’ metrics.roc_auc_score  
Clustering    
‘adjusted_rand_score’ metrics.adjusted_rand_score  
Regression    
‘neg_mean_absolute_error’ metrics.mean_absolute_error  
‘neg_mean_squared_error’ metrics.mean_squared_error  
‘neg_median_absolute_error’ metrics.median_absolute_error  
‘r2’ metrics.r2_score  

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

但后面听另外一个课的时候老师说,对于特征较多的模型不建议用gridSearch ,耗时,而且只是在train上表现好的参数,不一定在跨时间验证集上表现好

建议设计调参 ,设计的目标是跨时间验证集的KS要最大化,同时跨时间验证集和训练集的KS差距最小

调参方法

  • offks + 0.8(offks - devks)最大化
import pandas as pd
from sklearn.metrics import roc_auc_score,roc_curve,auc
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
import numpy as np
import random
import math
import lightgbm as lgb
from sklearn.model_selection import train_test_split data = pd.read_csv('Acard.txt') train = data[data.obs_mth != '2018-11-30'].reset_index().copy()
val = data[data.obs_mth == '2018-11-30'].reset_index().copy()
feature_lst = ['person_info','finance_info','credit_info','act_info']
x = train[feature_lst]
y = train['bad_ind'] val_x = val[feature_lst]
val_y = val['bad_ind'] train_x,test_x,train_y,test_y = train_test_split(x,y,random_state=0,test_size=0.2) #改变我们想去调整的参数为value,设置调参区间
min_value = 40
max_value = 60
for value in range(min_value,max_value+1):
best_omd = -1
best_value = -1
best_ks=[]
def lgb_test(train_x,train_y,test_x,test_y):
clf =lgb.LGBMClassifier(boosting_type = 'gbdt',
objective = 'binary',
metric = 'auc',
learning_rate = 0.1,
n_estimators = value,
max_depth = 5,
num_leaves = 20,
max_bin = 45,
min_data_in_leaf = 6,
bagging_fraction = 0.6,
bagging_freq = 0,
feature_fraction = 0.8,
silent=True
)
clf.fit(train_x,train_y,eval_set = [(train_x,train_y),(test_x,test_y)],eval_metric = 'auc')
return clf,clf.best_score_['valid_1']['auc'],
lgb_model , lgb_auc = lgb_test(train_x,train_y,test_x,test_y) y_pred = lgb_model.predict_proba(x)[:,1]
fpr_lgb_train,tpr_lgb_train,_ = roc_curve(y,y_pred)
train_ks = abs(fpr_lgb_train - tpr_lgb_train).max() y_pred = lgb_model.predict_proba(val_x)[:,1]
fpr_lgb,tpr_lgb,_ = roc_curve(val_y,y_pred)
val_ks = abs(fpr_lgb - tpr_lgb).max() Omd= val_ks + 0.8*(val_ks - train_ks)
if Omd>best_omd:
best_omd = Omd
best_value = value
best_ks = [train_ks,val_ks]
print('best_value:',best_value)
print('best_ks:',best_ks)

GridsearchCV调参的更多相关文章

  1. lightgbm调参方法

    gridsearchcv: https://www.cnblogs.com/bjwu/p/9307344.html gridsearchcv+lightgbm cv函数调参: https://www. ...

  2. LightGBM调参笔记

    本文链接:https://blog.csdn.net/u012735708/article/details/837497031. 概述在竞赛题中,我们知道XGBoost算法非常热门,是很多的比赛的大杀 ...

  3. GridSearchCV 与 RandomizedSearchCV 调参

    GridSearchCV    GridSearchCV的名字其实可以拆分为两部分,GridSearch和CV,即网格搜索和交叉验证. 这两个概念都比较好理解,网格搜索,搜索的是参数,即在指定的参数范 ...

  4. 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

  5. GridSearchCV和RandomizedSearchCV调参

    1 GridSearchCV实际上可以看做是for循环输入一组参数后再比较哪种情况下最优. 使用GirdSearchCV模板 # Use scikit-learn to grid search the ...

  6. scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...

  7. scikit-learn 梯度提升树(GBDT)调参小结

    在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...

  8. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  9. 调参必备---GridSearch网格搜索

    什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最 ...

随机推荐

  1. 洛谷P2150 寿司晚宴

    解:发现每个质数只能属于一个人,于是想到每个质数有三种情况:属于a,属于b,都不属于. 然后考虑状压每个人的质数集合,可以得到30分. 转移就是外层枚举每个数,内层枚举每个人的状态,然后看能否转移.能 ...

  2. 利用selenium并使用gevent爬取动态网页数据

    首先要下载相应的库 gevent协程库:pip install gevent selenium模拟浏览器访问库:pip install selenium selenium库相应驱动配置  https: ...

  3. 第二篇-Django建立数据库各表之间的联系(中)

    上篇中已经建立了两个table,Book和Publish.这篇介绍如何用python增删改查数据库中的数据. 在views.py中创建一个index函数 from django.shortcuts i ...

  4. django基于中间件的IP访问频率控制

    一.中间件的代码 注意:成功时返回的是None,那样才会走视图层,返回httpresponse就直接出去了 import time from django.utils.deprecation impo ...

  5. 第三十六节,目标检测之yolo源码解析

    在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的 ...

  6. mac java_home等系统参数配置

    JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_144.jdk/Contents/HomeCLASSPAHT=.:$JAVA_HOME/lib ...

  7. mysql视图、触发事务、存储过程

    视图 视图是一个虚拟表(非真实存在的),其本质就是根据SQL语言获取动态的数据集,并为其命名,用户使用时只需要使用名称即可获得结果集,可以将结果集当做表来使用. 视图是存在数据库中的,如果我们程序中使 ...

  8. php 4种传值方式

    我们定义page01.php和page02.php两个php文件,将page01中的内容想办法传递到page02,然后供我们继续使用. 第一种:     使用客户端浏览器的cookie.cookie很 ...

  9. docker 基础之数据管理

    数据卷 一.将本地默认目录挂载到docker容器内指定的目录 #将本地的目录挂在到docker容器内 docker run -it --name container-test -h CONTAINER ...

  10. Nginx自定义404页面并返回404状态码

    Nginx定义404页面并返回404状态码, WebServer是nginx,直接告诉我应该他们配置了nginx的404错误页面,虽然请求不存在的资源可以成功返回404页面,但返回状态码确是200. ...