GridsearchCV调参
在利用gridseachcv进行调参时,其中关于scoring可以填的参数在SKlearn中没有写清楚,就自己找了下,具体如下:
parameters = {'eps':[0.3,0.4,0.5,0.6], 'min_samples':[20,30,40]}
db = DBSCAN(metric='cosine', algorithm='brute').fit(xx)
grid = GridSearchCV(db, parameters, cv=5, scoring='adjusted_rand_score')
Scoring | Function | Comment |
---|---|---|
Classification | ||
‘accuracy’ | metrics.accuracy_score |
|
‘average_precision’ | metrics.average_precision_score |
|
‘f1’ | metrics.f1_score |
for binary targets |
‘f1_micro’ | metrics.f1_score |
micro-averaged |
‘f1_macro’ | metrics.f1_score |
macro-averaged |
‘f1_weighted’ | metrics.f1_score |
weighted average |
‘f1_samples’ | metrics.f1_score |
by multilabel sample |
‘neg_log_loss’ | metrics.log_loss |
requires predict_proba support |
‘precision’ etc. | metrics.precision_score |
suffixes apply as with ‘f1’ |
‘recall’ etc. | metrics.recall_score |
suffixes apply as with ‘f1’ |
‘roc_auc’ | metrics.roc_auc_score |
|
Clustering | ||
‘adjusted_rand_score’ | metrics.adjusted_rand_score |
|
Regression | ||
‘neg_mean_absolute_error’ | metrics.mean_absolute_error |
|
‘neg_mean_squared_error’ | metrics.mean_squared_error |
|
‘neg_median_absolute_error’ | metrics.median_absolute_error |
|
‘r2’ | metrics.r2_score |
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
但后面听另外一个课的时候老师说,对于特征较多的模型不建议用gridSearch ,耗时,而且只是在train上表现好的参数,不一定在跨时间验证集上表现好
建议设计调参 ,设计的目标是跨时间验证集的KS要最大化,同时跨时间验证集和训练集的KS差距最小
调参方法
- offks + 0.8(offks - devks)最大化
import pandas as pd
from sklearn.metrics import roc_auc_score,roc_curve,auc
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
import numpy as np
import random
import math
import lightgbm as lgb
from sklearn.model_selection import train_test_split data = pd.read_csv('Acard.txt') train = data[data.obs_mth != '2018-11-30'].reset_index().copy()
val = data[data.obs_mth == '2018-11-30'].reset_index().copy()
feature_lst = ['person_info','finance_info','credit_info','act_info']
x = train[feature_lst]
y = train['bad_ind'] val_x = val[feature_lst]
val_y = val['bad_ind'] train_x,test_x,train_y,test_y = train_test_split(x,y,random_state=0,test_size=0.2) #改变我们想去调整的参数为value,设置调参区间
min_value = 40
max_value = 60
for value in range(min_value,max_value+1):
best_omd = -1
best_value = -1
best_ks=[]
def lgb_test(train_x,train_y,test_x,test_y):
clf =lgb.LGBMClassifier(boosting_type = 'gbdt',
objective = 'binary',
metric = 'auc',
learning_rate = 0.1,
n_estimators = value,
max_depth = 5,
num_leaves = 20,
max_bin = 45,
min_data_in_leaf = 6,
bagging_fraction = 0.6,
bagging_freq = 0,
feature_fraction = 0.8,
silent=True
)
clf.fit(train_x,train_y,eval_set = [(train_x,train_y),(test_x,test_y)],eval_metric = 'auc')
return clf,clf.best_score_['valid_1']['auc'],
lgb_model , lgb_auc = lgb_test(train_x,train_y,test_x,test_y) y_pred = lgb_model.predict_proba(x)[:,1]
fpr_lgb_train,tpr_lgb_train,_ = roc_curve(y,y_pred)
train_ks = abs(fpr_lgb_train - tpr_lgb_train).max() y_pred = lgb_model.predict_proba(val_x)[:,1]
fpr_lgb,tpr_lgb,_ = roc_curve(val_y,y_pred)
val_ks = abs(fpr_lgb - tpr_lgb).max() Omd= val_ks + 0.8*(val_ks - train_ks)
if Omd>best_omd:
best_omd = Omd
best_value = value
best_ks = [train_ks,val_ks]
print('best_value:',best_value)
print('best_ks:',best_ks)
GridsearchCV调参的更多相关文章
- lightgbm调参方法
gridsearchcv: https://www.cnblogs.com/bjwu/p/9307344.html gridsearchcv+lightgbm cv函数调参: https://www. ...
- LightGBM调参笔记
本文链接:https://blog.csdn.net/u012735708/article/details/837497031. 概述在竞赛题中,我们知道XGBoost算法非常热门,是很多的比赛的大杀 ...
- GridSearchCV 与 RandomizedSearchCV 调参
GridSearchCV GridSearchCV的名字其实可以拆分为两部分,GridSearch和CV,即网格搜索和交叉验证. 这两个概念都比较好理解,网格搜索,搜索的是参数,即在指定的参数范 ...
- 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...
- GridSearchCV和RandomizedSearchCV调参
1 GridSearchCV实际上可以看做是for循环输入一组参数后再比较哪种情况下最优. 使用GirdSearchCV模板 # Use scikit-learn to grid search the ...
- scikit-learn随机森林调参小结
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注 ...
- scikit-learn 梯度提升树(GBDT)调参小结
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 调参必备---GridSearch网格搜索
什么是Grid Search 网格搜索? Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果.其原理就像是在数组里找最 ...
随机推荐
- System.Web.Optimization对脚本和样式表的压缩操作
1 是否允许样式表压缩 BundleTable.EnableOptimizations = true; 在MVC项目中的 BundleConfig操作中是微软已经给我们准备好的CSS和JS压缩,我们可 ...
- smartProgram学习笔记
背景:转正前要完成这样一个编程课的学习.平时写代码只是完成基本的功能,没有养成良好的习惯,感觉这样的课程还是要好好学习下,要不真是不知道什么叫写代码. Week1 为什么要写好代码? 因为平时读:写代 ...
- bzoj1791[IOI2008]Island岛屿(基环树+DP)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1791 题目大意:给你一棵n条边的基环树森林,要你求出所有基环树/树的直径之和.n< ...
- 斯坦福大学公开课机器学习:machine learning system design | trading off precision and recall(F score公式的提出:学习算法中如何平衡(取舍)查准率和召回率的数值)
一般来说,召回率和查准率的关系如下:1.如果需要很高的置信度的话,查准率会很高,相应的召回率很低:2.如果需要避免假阴性的话,召回率会很高,查准率会很低.下图右边显示的是召回率和查准率在一个学习算法中 ...
- HR算法具体过程
首先研究HR算法在概率分布估计中的实现,我们再考虑如何将其应用于频繁项挖掘中. 一.确定输入数据类型 def generate_uniform_distribution(k): raw_distrib ...
- gitlab 500 服务器错误 重启解决了
查看状态 sudo gitlab-ctl status # 启动Gitlab所有组件 sudo gitlab-ctl start # 停止Gitlab所有组件 sudo gitlab-ctl stop ...
- 深入理解JS函数中this指针的指向
函数在执行时,会在函数体内部自动生成一个this指针.谁直接调用产生这个this指针的函数,this就指向谁. 怎么理解指向呢,我认为指向就是等于.例如直接在js中输入下面的等式: console.l ...
- 原生js操作Dom命令总结
常用的dom方法 document.getElementById(“box”);//通过id获取标签 document.getElementsByTagName(“div”);根据标签名获取页面 ...
- npm总是报错:unable to verify the first certificate
今天npm install总是报错:unable to verify the first certificate(无法验证第一证书),查了一下发现 As of February 27, 2014, n ...
- MySQL高可用架构之Mycat-关于Mycat安装和参数设置详解
MySQL高可用架构之Mycat-关于Mycat安装和参数设置详解 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Mycat介绍 1>.什么是Mycat Mycat背后是 ...