洛谷P3338 力
题意:
解:
介绍两种方法。
首先可以把那个最后除的qi拆掉。
①分前后两部分处理。
前一部分可以看做是个卷积。下面的平方不拆开,直接看成gi-j即可。
后一部分按照套路,把循环变量改成从0开始,反转q,之后也是卷积。
②直接构造函数卷积。
题解。
我写的第一种。
#include <cstdio>
#include <algorithm>
#include <cmath> const int N = ;
const double pi = 3.1415926535897932384626; struct cp {
double x, y;
cp(double X = , double Y = ) {
x = X;
y = Y;
}
inline cp operator +(const cp &w) const {
return cp(x + w.x, y + w.y);
}
inline cp operator -(const cp &w) const {
return cp(x - w.x, y - w.y);
}
inline cp operator *(const cp &w) const {
return cp(x * w.x - y * w.y, x * w.y + y * w.x);
}
}f[N << ], g[N << ], h[N << ]; int r[N << ]; inline void FFT(int n, cp *a, int f) {
for(int i = ; i < n; i++) {
if(i < r[i]) {
std::swap(a[i], a[r[i]]);
}
} for(int len = ; len < n; len <<= ) {
cp Wn(cos(pi / len), f * sin(pi / len));
for(int i = ; i < n; i += (len << )) {
cp w(, );
for(int j = ; j < len; j++) {
cp t = a[i + len + j] * w;
a[i + len + j] = a[i + j] - t;
a[i + j] = a[i + j] + t;
w = w * Wn;
}
}
} if(f == -) {
for(int i = ; i <= n; i++) {
a[i].x /= n;
}
}
return;
} int main() {
int n;
scanf("%d", &n);
n--;
for(int i = ; i <= n; i++) {
scanf("%lf", &f[i].x);
h[n - i].x = f[i].x;
}
g[].x = ;
for(int i = ; i <= n; i++) {
g[i].x = ((double)()) / i / i;
} int len = , lm = ;
while(len <= n + n) {
len <<= ;
lm++;
}
for(int i = ; i <= len; i++) {
r[i] = (r[i >> ] >> ) | ((i & ) << (lm - ));
} FFT(len, f, );
FFT(len, g, );
FFT(len, h, );
for(int i = ; i <= len; i++) {
f[i] = f[i] * g[i];
g[i] = g[i] * h[i];
}
FFT(len, f, -);
FFT(len, g, -); for(int i = ; i <= n; i++) {
printf("%lf\n", f[i].x - g[n - i].x);
} return ;
}
AC代码
洛谷P3338 力的更多相关文章
- 洛谷 [P3338] 力
FFT \[E_i = F_i / q_i = \sum_{i<j} \frac {q_j} {(i - j)^2} - \sum _{ i > j} \frac{q _ j} {(i - ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- 【洛谷 P3338】 [ZJOI2014]力(FFT)
题目链接 \[\Huge{E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(i-j)^2}}\] 设\(A[i]= ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- 洛谷 P3338 [ZJOI2014]力
题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...
- 【洛谷P3338】力
题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...
- [bzoj3527] [洛谷P3338] [Zjoi2014]力
Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...
- 「洛谷3338」「ZJOI2014」力【FFT】
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...
随机推荐
- APP-SERVICE-SDK:setStorageSync:fail;at page/near/pages/shops/shops page lifeCycleMethod onUnload function
APP-SERVICE-SDK:setStorageSync:fail;at page/near/pages/shops/shops page lifeCycleMethod onUnload fun ...
- Mysql优化单表查询
借助explain分析SQL,判断该怎么建立索引. 还需要注意,有些情况会导致索引失效,用不上索引,应该优化SQL,应用上索引. 什么情况导致索引失效? 1.在索引列上做任何操作(计算.函数.类型转换 ...
- sql查询(转)
http://www.51testing.com/html/41/n-4421541.html 1 负向条件查询(例如:!=.not in.not exists)都是不能使用索引,少用 可以使用:se ...
- Mybatis之执行自定义SQL举例
本文说明如何使用Mybatis执行我自定义输入的SQL语句. 需要的mybaits文件包括:配置文件(mybatis-config-dao.xml 和 jdbc.properties).接口文件(IS ...
- Log4j2配置与使用
依赖包: <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api --> <depend ...
- 一、linux扩展
1.linux-解压bz2文件提示tar (child): bzip2: Cannot exec: No such file or directory 原因,linux下没有bzip2解压工具 安装b ...
- orcale建表脚本
declare v_cnt number; V_SQL VARCHAR2 (500) := '';begin select count(*) into v_cnt from dual where ex ...
- WGS84,GCJ02, BD09坐标转换
public class Gps { private double wgLat; private double wgLon; public Gps(double wgLat, double wgLon ...
- iOS后台运行播放无声音频 测试可行
如果打回来了,就自认倒霉吧 制作无声音频. @interface AppDelegate () { NSInteger count; } @property(strong, nonatomic)NST ...
- HDU5773-The All-purpose Zero-多校#41010-最长上升子序列问题
只想到了朴素的n^2做法,然后发现可以用splay维护.于是调了几个小时的splay... splay的元素是从第二个开始的!第一个是之前插入的头节点! #include <cstdio> ...