题意:

解:

介绍两种方法。

首先可以把那个最后除的qi拆掉。

①分前后两部分处理。

前一部分可以看做是个卷积。下面的平方不拆开,直接看成gi-j即可。

后一部分按照套路,把循环变量改成从0开始,反转q,之后也是卷积。

②直接构造函数卷积。

题解

我写的第一种。

 #include <cstdio>
#include <algorithm>
#include <cmath> const int N = ;
const double pi = 3.1415926535897932384626; struct cp {
double x, y;
cp(double X = , double Y = ) {
x = X;
y = Y;
}
inline cp operator +(const cp &w) const {
return cp(x + w.x, y + w.y);
}
inline cp operator -(const cp &w) const {
return cp(x - w.x, y - w.y);
}
inline cp operator *(const cp &w) const {
return cp(x * w.x - y * w.y, x * w.y + y * w.x);
}
}f[N << ], g[N << ], h[N << ]; int r[N << ]; inline void FFT(int n, cp *a, int f) {
for(int i = ; i < n; i++) {
if(i < r[i]) {
std::swap(a[i], a[r[i]]);
}
} for(int len = ; len < n; len <<= ) {
cp Wn(cos(pi / len), f * sin(pi / len));
for(int i = ; i < n; i += (len << )) {
cp w(, );
for(int j = ; j < len; j++) {
cp t = a[i + len + j] * w;
a[i + len + j] = a[i + j] - t;
a[i + j] = a[i + j] + t;
w = w * Wn;
}
}
} if(f == -) {
for(int i = ; i <= n; i++) {
a[i].x /= n;
}
}
return;
} int main() {
int n;
scanf("%d", &n);
n--;
for(int i = ; i <= n; i++) {
scanf("%lf", &f[i].x);
h[n - i].x = f[i].x;
}
g[].x = ;
for(int i = ; i <= n; i++) {
g[i].x = ((double)()) / i / i;
} int len = , lm = ;
while(len <= n + n) {
len <<= ;
lm++;
}
for(int i = ; i <= len; i++) {
r[i] = (r[i >> ] >> ) | ((i & ) << (lm - ));
} FFT(len, f, );
FFT(len, g, );
FFT(len, h, );
for(int i = ; i <= len; i++) {
f[i] = f[i] * g[i];
g[i] = g[i] * h[i];
}
FFT(len, f, -);
FFT(len, g, -); for(int i = ; i <= n; i++) {
printf("%lf\n", f[i].x - g[n - i].x);
} return ;
}

AC代码

洛谷P3338 力的更多相关文章

  1. 洛谷 [P3338] 力

    FFT \[E_i = F_i / q_i = \sum_{i<j} \frac {q_j} {(i - j)^2} - \sum _{ i > j} \frac{q _ j} {(i - ...

  2. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  3. 洛谷 P3338 [ZJOI2014]力 解题报告

    P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...

  4. 【洛谷 P3338】 [ZJOI2014]力(FFT)

    题目链接 \[\Huge{E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(i-j)^2}}\] 设\(A[i]= ...

  5. 洛谷P3338 [ZJOI2014]力(FFT)

    传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...

  6. 洛谷 P3338 [ZJOI2014]力

    题意简述 读入\(n\)个数\(q_i\) 设\(F_j = \sum\limits_{i<j}\frac{q_i\times q_j}{(i-j)^2 }-\sum\limits_{i> ...

  7. 【洛谷P3338】力

    题目大意:求 \[ E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}} \] 题解:可以 ...

  8. [bzoj3527] [洛谷P3338] [Zjoi2014]力

    Description 给出n个数qi,给出Fj的定义如下: \[ F_j=\sum\limits_{i<j} \frac{q_iq_j}{(i-j)^2} - \sum\limits_{i&g ...

  9. 「洛谷3338」「ZJOI2014」力【FFT】

    题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\s ...

随机推荐

  1. Linux安装mysql5.6

    安装mysql5.6https://www.cnblogs.com/wangdaijun/p/6132632.html

  2. python爬虫之requests的基本使用

    简介 Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库,Requests它会比urllib更加方便,可以节约我们大量的工作. 一 ...

  3. 不使用DataContext直接将ViewModels绑定到ItemsControl控件

    在常规的MVVM设计模式中,都是通过DataContext将ViewModels的一个对象绑定到View的DataContext中,从而完成相应地绑定,在本文中我们将通过另外的一种思路来将ViewMo ...

  4. Centos rpm包安装PHP所需包

    yum -y install php php-devel php-fpm php-xml php-pdo php-ldap php-mysql

  5. 命名自我规约manual

    前端: 所有文件命名都小写,多个单词连接使用 “-” 变量命名规则还是驼峰式,或者在前面加个 “_” SQL: MySQL: 所有命名都小写,无论库.表.还是字段等等,都小写 多个单词之间的分隔,使用 ...

  6. java_manual的一点体会

    最近看了一下Alibaba的java_manual1.4,看了感觉有很多好的标准,这里摘录一些,也帮助自己的代码更加规范化 先放一些MySQL的规范: 这里附上MySQL官网给的参考手册上的 关键字和 ...

  7. 使用javaWeb的二大(Listener、Filter)组件实现分IP统计访问次数

    分析: 统计工作需要在所有资源之前都执行,那么就可以放到Filter中. 我们这个过滤器不打算做拦截操作!因为我们只是用来做统计 用什么东西来装载统计的数据.Map<String,Integer ...

  8. ExportHandler.ashx

    using KYZWeb.Common;using Liger.Data;//using Microsoft.Office.Interop.Excel;using System;using Syste ...

  9. Eclipse环境配置与快捷命令

    1.VS.Chrome.Eclipse调试命令对比: VS: F5: 继续运行 F10: 单步执行 F11: 进入函数内部 Shift + F11: 由函数内部返回调用处 Chrome: F8: 继续 ...

  10. PXE网络装机

    PXE网络装机配置 安装CentOS 6.5系统 1.配置服务端IP地址和yum源 略 2.安装配置VSFTP服务 vsftpd 的作用:为客户端提供FTP服务,便于客户端下载操作系统 (1)安装vs ...