稀疏矩阵 part 3
▶ 各种稀疏矩阵数据结构下 y(n,1) = A(n,m) * x(m,1) 的实现,CPU版本
● MAT 乘法
int dotCPU(const MAT *a, const MAT *x, MAT *y)
{
checkNULL(a); checkNULL(x); checkNULL(y);
if (a->col != x->row)
{
printf("dotMATCPU dimension mismatch!\n");
return ;
} y->row = a->row;
y->col = x->col;
for (int i = ; i < a->row; i++)
{
format sum = ;
for (int j = ; j < a->col; j++)
sum += a->data[i * a->col + j] * x->data[j];
y->data[i] = sum;
}
COUNT_MAT(y);
return ;
}
● CSR 乘法
int dotCPU(const CSR *a, const MAT *x, MAT *y)
{
checkNULL(a); checkNULL(x); checkNULL(y);
if (a->col != x->row)
{
printf("dotCSRCPU dimension mismatch!\n");
return ;
} y->row = a->row;
y->col = x->col;
for (int i = ; i < a->row; i++) // i 遍历 ptr,j 遍历行内数据,A 中为 0 的元素不参加乘法
{
format sum = ;
for (int j = a->ptr[i]; j < a->ptr[i + ]; j++)
sum += a->data[j] * x->data[a->index[j]];
y->data[i] = sum;
}
COUNT_MAT(y);
return ;
}
● ELL 乘法
int dotCPU(const ELL *a, const MAT *x, MAT *y) // CPU ELL乘法
{
checkNULL(a); checkNULL(x); checkNULL(y);
if (a->colOrigin != x->row)
{
printf("dotELLCPU dimension mismatch!\n");
return ;
} y->row = a->col;
y->col = x->col;
for (int i = ; i<a->col; i++)
{
format sum = ;
for (int j = ; j < a->row; j++)
{
int temp = a->index[j * a->col + i];
if (temp < ) // 跳过无效元素
continue;
sum += a->data[j * a->col + i] * x->data[temp];
}
y->data[i] = sum;
}
COUNT_MAT(y);
return ;
}
● COO 乘法
int dotCPU(const COO *a, const MAT *x, MAT *y)
{
checkNULL(a); checkNULL(x); checkNULL(y);
if (a->col != x->row)
{
printf("dotCOOCPU null!\n");
return ;
} y->row = a->row;
y->col = x->col;
for (int i = ; i<a->count; i++)
y->data[a->rowIndex[i]] += a->data[i] * x->data[a->colIndex[i]];
COUNT_MAT(y);
return ;
}
● DIA 乘法
int dotCPU(const DIA *a, const MAT *x, MAT *y)
{
checkNULL(a); checkNULL(x); checkNULL(y);
if (a->colOrigin != x->row)
{
printf("dotDIACPU null!\n");
return ;
}
y->row = a->row;
y->col = x->col;
int * inverseIndex = (int *)malloc(sizeof(int) * a->col);
for (int i = , j = ; i < a->row + a->col - ; i++)
{
if (a->index[i] == )
{
inverseIndex[j] = i;
j++;
}
}
for (int i = ; i < a->row; i++)
{
format sum = ;
for (int j = ; j < a->col; j++)
{
if (i < a->row - - inverseIndex[j] || i > inverseIndex[a->col - ] - inverseIndex[j])
continue;
sum += a->data[i * a->col + j] * x->data[i + inverseIndex[j] - a->row + ];
}
y->data[i] = sum;
}
COUNT_MAT(y);
free(inverseIndex);
return ;
}
稀疏矩阵 part 3的更多相关文章
- [LeetCode] Sparse Matrix Multiplication 稀疏矩阵相乘
Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...
- 转载:稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB
http://www.cnblogs.com/xbinworld/p/4273506.html 稀疏矩阵是指矩阵中的元素大部分是0的矩阵,事实上,实际问题中大规模矩阵基本上都是稀疏矩阵,很多稀疏度在9 ...
- poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化
题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...
- 稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB
稀疏矩阵是指矩阵中的元素大部分是0的矩阵,事实上,实际问题中大规模矩阵基本上都是稀疏矩阵,很多稀疏度在90%甚至99%以上.因此我们需要有高效的稀疏矩阵存储格式.本文总结几种典型的格式:COO,CSR ...
- C语言 稀疏矩阵 压缩 实现
稀疏矩阵压缩存储的C语言实现 (GCC编译). /** * @brief C语言 稀疏矩阵 压缩 实现 * @author wid * @date 2013-11-04 * * @note 若代码存在 ...
- 三元组表压缩存储稀疏矩阵实现稀疏矩阵的快速转置(Java语言描述)
三元组表压缩存储稀疏矩阵实现稀疏矩阵的快速转置(Java语言描述) 用经典矩阵转置算法和普通的三元组矩阵转置在时间复杂度上都是不乐观的.快速转置算法在增加适当存储空间后实现快速转置具体原理见代码注释部 ...
- 稀疏矩阵乘法加法等的java实现
原创声明:本文系作者原创,转载请写明出处. 一.前言 前几天由于科研需要,一直在搞矩阵的稀疏表示的乘法,不过最近虽然把程序写出来了,还是无法处理大规模的矩阵(虽然已经是稀疏了).原因可能是 ...
- Matlab稀疏矩阵
一.矩阵存储方式 MATLAB的矩阵有两种存储方式,完全存储方式和稀疏存储方式 1.完全存储方式 将矩阵的全部元素按列存储,矩阵中的全部零元素也存储到矩阵中. 2.稀疏存储方式 仅存储矩阵所有的非零元 ...
- matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换)
函数功能:生成稀疏矩阵 使用方法 :S = sparse(A) 将矩阵A转化为稀疏矩阵形式,即矩阵A中任何0元素被去除,非零元素及其下标组成矩阵S.如果A本身是稀疏的,sparse(S)返回S. S ...
- 稀疏矩阵coo_matrix的乘法
稀疏矩阵的乘法在做基于n-gram的分类的时候还是相当有用的,但是由于网上资料太少,所以折腾了几天才算折腾出来. 首先scipy包里常见的稀疏矩阵有三种形式, coo_matrix, csr_matr ...
随机推荐
- windows下配置maven
首先下载好maven的压缩包,然后解压到某个目录下,我解压到了D盘 打开readme.txt 1.2步已经完成,第3步的意思是让我们把bin所在的路径添加到系统变量的path中去 第4步意思是确保的你 ...
- Python学习笔记,day1
Python学习第一天 一.变量 变量定义的规则: 变量名只能是 字母.数字或下划线的任意组合 变量名的第一个字符不能是数字 以下关键字不能声明为变量名['and', 'as', 'assert', ...
- 上手d3js
0---什么是d3js: d3js是一个开源的,基于对svg操作的数据可视化框架,简单的说他提供了数据提供了一系列的数据可视化工具,可以用他很方便的创造出关于svg的动画:svg动画具有可伸缩,不失真 ...
- java基础(一):我对java的三个环境变量的简单理解和配置
首先说说java的三个环境变量:java_home,classpath,path java_home:jdk的安装路径[你一层一层点开安装路径,直到当前目录有一个bin目录,然后在地址栏里面右键单击复 ...
- ASP.NET MVC中,动态处理页面静态化 【转载】
首先解释一下什么是动态处理页面静态化 对于需要静态化的页面,第一次访问某个Action时,会先执行Action,并在页面渲染后向Response和服务器中网站的目录下都写入需要返回的html,而第二次 ...
- 两台Linux服务器之间复制文件
一.scp 1.简介 scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的 2.软件安装 ...
- Java开发中判断集合类为空的方法-转载
避免写两个判断 org.springframework.util.CollectionUtils 方法: public static boolean isEmpty(Collection collec ...
- Windows Server 2008 R2 /2012 修改密码策略
今天建了域环境,在添加新用户的时候,发现用简单的密码时域安全策略提示密码复杂度不够,于是我就想在域安全策略里面把密码复杂度降低一点. 问题: 在“管理工具 >> 本地安全策略 > ...
- docker systemctl无法使用
Dockerfile for systemd base image FROM centos:7 ENV container docker RUN (cd /lib/systemd/system/sys ...
- Azure CosmosDB (6) 冲突类型和解决策略
<Windows Azure Platform 系列文章目录> 当我们为CosmosDB配置多个Azure Region写入,就需要考虑冲突类型和解决策略. 对于配置了多个写入区域的 Az ...