Note for "Some Remarks on Writing Mathematical Proofs"
John M. Lee is a famous mathematician, who bears the reputation of writing the classical book "Introduction to Smooth Manifolds". In his article, "Some Remarks on Writing Mathematical Proofs", he gives us concrete and complete suggestions about how to write mathematical proofs in a concise and unambiguous way. In my opinion, most of them are quite pertinent and enlightening. In the following, I'll list some key points from this article and some comments are also appended.
- Identify your audience: know your audience is and what they already know.
Comment: this is very important! For audience at the beginner level, explanations should include minute details, which are similar to the annotations in a traditional Chinese book and usually their text length largely exceeds the original text. Don't be afraid that the explanations may look naive and trivial in the eyes of expert. Actual examples are also recommended to be provided. Vivid illustrations are quite helpful for the ease of understanding. For professional mathematicians, the writing should presented in a rather formal and abstract way for the purpose of clarity and brevity. We should use well-defined and unambiguous mathematical symbols to describe facts by starting from definitions, then lemmas, theorems etc. and gradually unfolding the complete logical network.
- Write in paragraph form
- Avoid most abbreviations like "s.t.", "w.r.t", etc. However, "e.g." and "i.e." are still acceptable.
They are suitable for handwritten in a notebook or on a blackboard, but not suitable for a formal mathematical writing.
- State what you're proving, i.e. restate the theorem to be proved in a formal way before the proof starts.
- Label your theorems by using the following keywords (generally speaking, they all mean the same thing, that is a mathematical statement to be proved from assumptions and previously proved results):
- Theorem: an important proposition.
- Proposition: a result that is interesting in its own right, but not as important as a theorem.
- Lemma: a result that might not be interesting in itself, but is useful for proving another theorem.
- Corollary: a result that follows easily from some theorem, usually the immediately preceding one.
For handwritten mathematics, underline these keywords with an emphasizing effect.
- Show where your proofs begin and end
The proofs start with Proof and end with \(\Box\). In \(\LaTeX\), this is done automatically by various predefined mathematical environments. Handwritten mathematics should also follow the same convention.
- Why is it true?
Every mathematical statement in a proof must be justified in one or more of the following six ways:
- by an axiom;
- by a previously proved theorem;
- by a definition;
- by a hypothesis (including an inductive hypothesis or an assumption for the sake of contradiction);
- by a previous step in the current proof;
- by the rules or logic.
Comment: we can see the logical rigorousness in mathematical proofs.
- Include more than just the logic
Mathematical proofs are not simply stacking formulas. The formulas should be concatenated by meaningful and logical descriptions.
- Include the right amount of detail
Knowing the audience is a precondition.
- Writing mathematical formulas
- Every mathematical symbol or formula should have a definite grammatical function as part of a sentence. Therefore, if they end a sentence or a clause, a punctuation mark must be followed.
Read aloud each sentence is a good way to check.
- Do not begin a sentence in a paragraph with a mathematical symbol. For example, "\(l\) and \(m\) are parallel lines" is not good, write "The lines \(l\) and \(m\) are parallel" instead.
- Avoid writing two in-line formulas separated only by a comma or other punctuation mark. For example, "If \(x \neq 0\), \(x^2>0\)" is not good, write "If \(x \neq 0\), then \(x^2>0\) instead.
- Do not connect words with symbols. For example, "If \(x\) is an function \(\in X\)" is not good.
- Symbols for logical terms like \(\exists\) (there exists), \(\forall\) (for all), \(\wedge\) (and), \(\vee\) (or), \(\neg\) (not), \(\Rightarrow\) (implies), \(\Leftrightarrow\) (if and only if), \(\ni\) (such that), \(\because\) (because) and \(\therefore\) (therefore) should only be used in handwritten mathematics. In formal mathematical writing, they should be replaced with English words.
Exception: \(\Rightarrow\) and \(\Leftrightarrow\) can be used to connect complete symbolic statements. For example:
We will prove that \((a) \Leftrightarrow (b)\).
- Every mathematical symbol or formula should have a definite grammatical function as part of a sentence. Therefore, if they end a sentence or a clause, a punctuation mark must be followed.
Note for "Some Remarks on Writing Mathematical Proofs"的更多相关文章
- Greedy is Good
作者:supernova 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=greedyAlg Joh ...
- 【转发】Html5 File Upload with Progress
Html5 File Upload with Progress Posted by Shiv Kumar on 25th September, 2010Senior Sof ...
- Mathematics for Computer Graphics数学在计算机图形学中的应用 [转]
最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=10509 [译]Mathematics for Computer Gra ...
- Mathematics for Computer Graphics
Mathematics for Computer Graphics 最近严重感觉到数学知识的不足! http://bbs.gameres.com/showthread.asp?threadid=105 ...
- matplotlib 入门之Sample plots in Matplotlib
文章目录 Line Plot One figure, a set of subplots Image 展示图片 展示二元正态分布 A sample image Interpolating images ...
- [转] h5上传视频或文件编写
Html5 finally solves an age old problem of being able to upload files while also showing the upload ...
- Pyplot tutorial,Pyplot官方教程自翻译
matplotlib.pyplot is a collection of command style functions that make matplotlib work like MATLAB ...
- [转]Extending the User Interface in Outlook 2010
本文转自:https://msdn.microsoft.com/en-us/library/office/ee692172%28v=office.14%29.aspx#OfficeOLExtendin ...
- 为什么深度神经网络难以训练Why are deep neural networks hard to train?
Imagine you're an engineer who has been asked to design a computer from scratch. One day you're work ...
随机推荐
- linux 新机器的配置(git + nodejs+ mongodb)
安装nodejs: wget https://nodejs.org/dist/v6.9.5/node-v6.9.5-linux-x64.tar.xz tar xvf node-v6.9.5-linux ...
- Windows10下Django虚拟环境配置和简单入门实例
环境win10家庭版64位 + python 3.5 + Django 1.8.2 1.创建virtualenv目录 开始/运行/cmd回车,进入cmd窗口,到自己指定的目录下创建virtualenv ...
- Win7开机卡在Windows Update 35%的解决办法
一台Win7老机器,多年未清理,用DISM++清理后,开机重启一直卡在Windows Update 35%转圈圈数小时,无法进入系统. 强制按关机键,F8进入安全模式依然同样现象. 查阅MSDN后,有 ...
- [转载]RabbitMQ消息可靠性分析
有很多人问过我这么一类问题:RabbitMQ如何确保消息可靠?很多时候,笔者的回答都是:说来话长的事情何来长话短说.的确,要确保消息可靠不只是单单几句就能够叙述明白的,包括Kafka也是如此.可靠并不 ...
- Android下利用zxing类库实现扫一扫
程序源代码及可执行文件下载地址:http://files.cnblogs.com/rainboy2010/zxingdemo.zip zxing,一款无比强大的条码解析类库,下面讲解一下如何利用zxi ...
- Python下划线的详解
本文将讨论Python中下划线(_)字符的使用方法.我们将会看到,正如Python中的很多事情,下划线的不同用法大多数(并非所有)只是常用惯例而已. 单下划线(_) 通常情况下,会在以下3种场景中使用 ...
- 自定义Dialog的详细步骤(实现自定义样式一般原理)
现在很多App的提示对话框都非常有个性,然而你还用系统的对话框样式,是不是觉得很落后呢,今天我就给大家讲讲怎样自定义自己的Dialog,学会了之后,你就会根据自家app的主题,设计出相应的Dialog ...
- 使用应用链接来连接 Jira 和 Confluence 6
请参考 Linking to Another Application 页面中的内容来设置如何让 Confluence 连接到你的 Jira 应用,这个过程只需要一次就可以了. 如果你计划使用 Jira ...
- Java测试代码(很不完整,建议大家别看,过几天会再发一次难的版本)
package ATM; import java.io.BufferedReader; import java.io.InputStreamReader; class Account{ priv ...
- Django 之缓存
一.缓存 由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存,缓存将一个某个views的返回值保存至内存或者memcac ...