Inception v1

论文:《Going deeper with convolutions》

在较低的层(靠近输入的层)中,相关单元更侧重提取局部区域的信息。因此使用1x1的特征可以保存这些特征,从而与其他支路提取的特征进行融合。

3x3和5x5的卷积是想要提取不同尺度的特征,3x3卷积和5x5卷积之前的1x1的卷积作用是减少channel,从而降低参数量。

论文中说到之所以使用pooling,是因为pooling操作在目前最好的卷积网络中是必要的,个人理解是pooling操作可以增强网络的平移不变性。

GoogLeNet结构(Inception V1)

输入为224x224的RGB图像,‘#3x3 reduce’和‘#5x5 reduce’表示3x3和5x5卷积之前1x1的卷积核的个数。

为了阻止该网络中间部分梯度消失,作者引入了两个辅助分类器。它们对其中两个 Inception 模块的输出执行 softmax 操作,然后在同样的标签上计算辅助损失。总损失即辅助损失和真实损失的加权和。辅助损失只是用于训练,在推断过程中并不使用。

Inception v2

论文:《Rethinking the Inception Architecture for Computer Vision》

大尺度的卷积往往会造成计算的浪费,因为大尺度卷积可以分解为几个小尺度的卷积,从而减小计算量。例如5x5的卷积可以分解为两层3x3的卷积,而后者的计算量也更小。因此,在inception v2中,大尺度的卷积被分解为小尺度卷积。此外,论文还提出了使用1xn和nx1的两层卷积代替nxn卷积。inception模块之间使用stride=2的卷积来降低尺度,而非pooling操作。

论文提出的几种inception模块如下

Figure 5

Figure 6

Figure 7

GoogLeNet的结构如下

inception之间使用下面模块降低尺度。

Inception v3

作者注意到辅助分类器直到训练过程快结束时才有较多贡献,那时准确率接近饱和。作者认为辅助分类器的功能是正则化,尤其是它们具备 BatchNorm 或 Dropout 操作时。是否能够改进 Inception v2 而无需大幅更改模块仍需要调查。

解决方案:

Inception Net v3 整合了前面 Inception v2 中提到的所有升级,还使用了:

  • RMSProp 优化器;
  • Factorized 7x7 卷积;
  • 辅助分类器使用了 BatchNorm;
  • 标签平滑(添加到损失公式的一种正则化项,旨在阻止网络对某一类别过分自信,即阻止过拟合)。

Inception v4

论文:《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》

改论文提出了inception结合ResNet的网络模块。卷积网络参数中标V的,padding使用valid类型。由于论文提出的模块较多,在此方向模块结构,不做详细说明。

GoogLeNet结构的更多相关文章

  1. 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)

    http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...

  2. alexnet,VGG,googlenet,resnet

    非常好的一篇:https://my.oschina.net/u/876354/blog/1637819 alexnet和VGG没什么特别的,VGG深一些. Deep learning 实际上是一种 f ...

  3. 【CV论文阅读】Going deeper with convolutions(GoogLeNet)

    目的: 提升深度神经网络的性能. 一般方法带来的问题: 增加网络的深度与宽度. 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会使得很多参数趋向于 ...

  4. 论文阅读笔记三十一:YOLO 9000: Better,Faster,Stronger(CVPR2016)

    论文源址:https://arxiv.org/abs/1612.08242 代码:https://github.com/longcw/yolo2-pytorch 摘要 本文提出YOLO9000可以检测 ...

  5. 论文笔记系列-Neural Architecture Search With Reinforcement Learning

    摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...

  6. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  7. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  8. GoogleNet tips

    Inception Module googlenet的Inception Module Idea 1: Use 1x1, 3x3, and 5x5 convolutions in parallel t ...

  9. 解读(GoogLeNet)Going deeper with convolutions

    (GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包 ...

随机推荐

  1. 【JDBC】CRUD操作

    JDBC的CRUD操作 向数据库中保存记录 修改数据库中的记录 删除数据库中的记录 查询数据库中的记录 保存代码的实现 package demo1; import java.sql.Connectio ...

  2. C#&.Net干货分享-构建Aocr_ImageHelper读取图片文字做解析

    直接源码,就是这么干脆... namespace Frame.Image{    /// <summary>    ///     /// </summary>    publ ...

  3. JS&Jquery基础之对象和数组以及类型转换

    一.{ } 大括号,表示定义一个对象,大部分情况下要有成对的属性和值,或是函数. 如:var LangShen = {"Name":"Langshen",&qu ...

  4. Linux—软连接与硬连接

    软链接的创建,删除,修改 创建软链接:ln -s[目标文件或目录][软链接地址] 解释:软链接地址相当于快捷方式,目标文件或目录才是真正的内容.[软链接地址]指“快捷键”文件名称,该文件是被指令创建的 ...

  5. Linux Ctrl + Alt + Fx | (x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

    VMware Ubuntu中,按下 Ctrl + Alt + Fx | (x = 1...12),会出现不同的效果. 1. Ctrl + Alt + F1 ~ F6 Ctrl + Alt + F1 ~ ...

  6. linux下编译时的默认库和头文件搜索路径

    链接库路径 默认的链接库路径,定义在搜索/etc/ld.so.conf下的一些路径,其包含了一些重要的系统位置:LIBRARY_PATH, 但如果定义了LD_LIBRARY_PATH, 动态库的搜索路 ...

  7. 房屋布局分析《Physics Inspired Optimization on Semantic Transfer Features: An Alternative Method for Room Layout Estimation》

    视觉算法在智能审核系统上的演进与实践 刘天悦 贝壳找房 / 资深工程师 https://static001.geekbang.org/con/56/pdf/1088777747/file/%E8%A7 ...

  8. React: React脚手架

    一.简言 React开发目前已经非常流行,对于如何实现对React项目的管理和维护,React生态圈出现了大量可用的开发工具,例如Browserify.Gulp.Grunt.webpack等.其中,w ...

  9. sierpinski地毯

    (分形作业) 取一矩形,九等分而去其中. 每一份九等分去其中:循环往复.       方法一(传统方法) 将每个矩形映射到三个矩形中去即可. def big(a,times):    k=3**tim ...

  10. Java开发桌面程序学习(12)——Javafx 悬浮窗提示 tooptip

    Javafx 悬浮窗提示 tooptip 鼠标悬浮在某个控件,弹出提示,效果如下: 代码: //control是某个控件 Tooltip.install(control, new Tooltip(&q ...