Inception v1

论文:《Going deeper with convolutions》

在较低的层(靠近输入的层)中,相关单元更侧重提取局部区域的信息。因此使用1x1的特征可以保存这些特征,从而与其他支路提取的特征进行融合。

3x3和5x5的卷积是想要提取不同尺度的特征,3x3卷积和5x5卷积之前的1x1的卷积作用是减少channel,从而降低参数量。

论文中说到之所以使用pooling,是因为pooling操作在目前最好的卷积网络中是必要的,个人理解是pooling操作可以增强网络的平移不变性。

GoogLeNet结构(Inception V1)

输入为224x224的RGB图像,‘#3x3 reduce’和‘#5x5 reduce’表示3x3和5x5卷积之前1x1的卷积核的个数。

为了阻止该网络中间部分梯度消失,作者引入了两个辅助分类器。它们对其中两个 Inception 模块的输出执行 softmax 操作,然后在同样的标签上计算辅助损失。总损失即辅助损失和真实损失的加权和。辅助损失只是用于训练,在推断过程中并不使用。

Inception v2

论文:《Rethinking the Inception Architecture for Computer Vision》

大尺度的卷积往往会造成计算的浪费,因为大尺度卷积可以分解为几个小尺度的卷积,从而减小计算量。例如5x5的卷积可以分解为两层3x3的卷积,而后者的计算量也更小。因此,在inception v2中,大尺度的卷积被分解为小尺度卷积。此外,论文还提出了使用1xn和nx1的两层卷积代替nxn卷积。inception模块之间使用stride=2的卷积来降低尺度,而非pooling操作。

论文提出的几种inception模块如下

Figure 5

Figure 6

Figure 7

GoogLeNet的结构如下

inception之间使用下面模块降低尺度。

Inception v3

作者注意到辅助分类器直到训练过程快结束时才有较多贡献,那时准确率接近饱和。作者认为辅助分类器的功能是正则化,尤其是它们具备 BatchNorm 或 Dropout 操作时。是否能够改进 Inception v2 而无需大幅更改模块仍需要调查。

解决方案:

Inception Net v3 整合了前面 Inception v2 中提到的所有升级,还使用了:

  • RMSProp 优化器;
  • Factorized 7x7 卷积;
  • 辅助分类器使用了 BatchNorm;
  • 标签平滑(添加到损失公式的一种正则化项,旨在阻止网络对某一类别过分自信,即阻止过拟合)。

Inception v4

论文:《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》

改论文提出了inception结合ResNet的网络模块。卷积网络参数中标V的,padding使用valid类型。由于论文提出的模块较多,在此方向模块结构,不做详细说明。

GoogLeNet结构的更多相关文章

  1. 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)

    http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...

  2. alexnet,VGG,googlenet,resnet

    非常好的一篇:https://my.oschina.net/u/876354/blog/1637819 alexnet和VGG没什么特别的,VGG深一些. Deep learning 实际上是一种 f ...

  3. 【CV论文阅读】Going deeper with convolutions(GoogLeNet)

    目的: 提升深度神经网络的性能. 一般方法带来的问题: 增加网络的深度与宽度. 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会使得很多参数趋向于 ...

  4. 论文阅读笔记三十一:YOLO 9000: Better,Faster,Stronger(CVPR2016)

    论文源址:https://arxiv.org/abs/1612.08242 代码:https://github.com/longcw/yolo2-pytorch 摘要 本文提出YOLO9000可以检测 ...

  5. 论文笔记系列-Neural Architecture Search With Reinforcement Learning

    摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...

  6. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  7. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  8. GoogleNet tips

    Inception Module googlenet的Inception Module Idea 1: Use 1x1, 3x3, and 5x5 convolutions in parallel t ...

  9. 解读(GoogLeNet)Going deeper with convolutions

    (GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包 ...

随机推荐

  1. KumuluzEE - Java EE的微服务框架

    KumuluzEE - Java EE的微服务架构 https://www.jdon.com/soa/kumuluzEE.html

  2. Linux IO协议栈

    图片来源自网络,保持更新:更多内容请关注 cnblogs.com/xuyaowen 参考链接: https://zhuanlan.zhihu.com/p/39721251 http://blog.yu ...

  3. GCN 实现3 :代码解析

    1.代码结构 ├── data // 图数据 ├── inits // 初始化的一些公用函数 ├── layers // GCN层的定义 ├── metrics // 评测指标的计算 ├── mode ...

  4. pytorch 建立模型的几种方法

    利用pytorch来构建网络模型,常用的有如下三种方式 前向传播网络具有如下结构: 卷积层-->Relu层-->池化层-->全连接层-->Relu层 对各Conv2d和Line ...

  5. Codeforces Round #599 (Div. 1) B. 0-1 MST 图论

    D. 0-1 MST Ujan has a lot of useless stuff in his drawers, a considerable part of which are his math ...

  6. 描述符(__get__和__set__和__delete__)

    目录 一.描述符 二.描述符的作用 2.1 何时,何地,会触发这三个方法的执行 三.两种描述符 3.1 数据描述符 3.2 非数据描述符 四.描述符注意事项 五.使用描述符 5.1 牛刀小试 5.2 ...

  7. SQLite安装及使用教程

    SQLite是一款轻型的嵌入式关系数据库,轻量级,效率高,操作起来也特别方便 我们今天来讲解一下SQLite的安装和一些基本操作 SQLite下载 如果是64位机,下载下面的两个解压就好 在dos界面 ...

  8. 【Linux】Linux 性能瓶颈阈值分析

    Linux系统资源包括:CPU.IO(磁盘和网络).内存等 利用率达到三个阶段时: 1)50% 引起注意 2)70% 密切关注 3)90% 严重情况 vmstat.sar.iostat.mpstat. ...

  9. html背景音乐

    标签<audio> 参用属性 autoplay="autoplay"自动播放 controls="controls",在页面内显示显示控件,如播放按 ...

  10. keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction

    本文首发于个人博客https://kezunlin.me/post/88fbc049/,欢迎阅读最新内容! keras efficientnet introduction Guide About Ef ...