Inception v1

论文:《Going deeper with convolutions》

在较低的层(靠近输入的层)中,相关单元更侧重提取局部区域的信息。因此使用1x1的特征可以保存这些特征,从而与其他支路提取的特征进行融合。

3x3和5x5的卷积是想要提取不同尺度的特征,3x3卷积和5x5卷积之前的1x1的卷积作用是减少channel,从而降低参数量。

论文中说到之所以使用pooling,是因为pooling操作在目前最好的卷积网络中是必要的,个人理解是pooling操作可以增强网络的平移不变性。

GoogLeNet结构(Inception V1)

输入为224x224的RGB图像,‘#3x3 reduce’和‘#5x5 reduce’表示3x3和5x5卷积之前1x1的卷积核的个数。

为了阻止该网络中间部分梯度消失,作者引入了两个辅助分类器。它们对其中两个 Inception 模块的输出执行 softmax 操作,然后在同样的标签上计算辅助损失。总损失即辅助损失和真实损失的加权和。辅助损失只是用于训练,在推断过程中并不使用。

Inception v2

论文:《Rethinking the Inception Architecture for Computer Vision》

大尺度的卷积往往会造成计算的浪费,因为大尺度卷积可以分解为几个小尺度的卷积,从而减小计算量。例如5x5的卷积可以分解为两层3x3的卷积,而后者的计算量也更小。因此,在inception v2中,大尺度的卷积被分解为小尺度卷积。此外,论文还提出了使用1xn和nx1的两层卷积代替nxn卷积。inception模块之间使用stride=2的卷积来降低尺度,而非pooling操作。

论文提出的几种inception模块如下

Figure 5

Figure 6

Figure 7

GoogLeNet的结构如下

inception之间使用下面模块降低尺度。

Inception v3

作者注意到辅助分类器直到训练过程快结束时才有较多贡献,那时准确率接近饱和。作者认为辅助分类器的功能是正则化,尤其是它们具备 BatchNorm 或 Dropout 操作时。是否能够改进 Inception v2 而无需大幅更改模块仍需要调查。

解决方案:

Inception Net v3 整合了前面 Inception v2 中提到的所有升级,还使用了:

  • RMSProp 优化器;
  • Factorized 7x7 卷积;
  • 辅助分类器使用了 BatchNorm;
  • 标签平滑(添加到损失公式的一种正则化项,旨在阻止网络对某一类别过分自信,即阻止过拟合)。

Inception v4

论文:《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》

改论文提出了inception结合ResNet的网络模块。卷积网络参数中标V的,padding使用valid类型。由于论文提出的模块较多,在此方向模块结构,不做详细说明。

GoogLeNet结构的更多相关文章

  1. 【转】CNN卷积神经网络_ GoogLeNet 之 Inception(V1-V4)

    http://blog.csdn.net/diamonjoy_zone/article/details/70576775 参考: 1. Inception[V1]: Going Deeper with ...

  2. alexnet,VGG,googlenet,resnet

    非常好的一篇:https://my.oschina.net/u/876354/blog/1637819 alexnet和VGG没什么特别的,VGG深一些. Deep learning 实际上是一种 f ...

  3. 【CV论文阅读】Going deeper with convolutions(GoogLeNet)

    目的: 提升深度神经网络的性能. 一般方法带来的问题: 增加网络的深度与宽度. 带来两个问题: (1)参数增加,数据不足的情况容易导致过拟合 (2)计算资源要求高,而且在训练过程中会使得很多参数趋向于 ...

  4. 论文阅读笔记三十一:YOLO 9000: Better,Faster,Stronger(CVPR2016)

    论文源址:https://arxiv.org/abs/1612.08242 代码:https://github.com/longcw/yolo2-pytorch 摘要 本文提出YOLO9000可以检测 ...

  5. 论文笔记系列-Neural Architecture Search With Reinforcement Learning

    摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上 ...

  6. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  7. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  8. GoogleNet tips

    Inception Module googlenet的Inception Module Idea 1: Use 1x1, 3x3, and 5x5 convolutions in parallel t ...

  9. 解读(GoogLeNet)Going deeper with convolutions

    (GoogLeNet)Going deeper with convolutions Inception结构 目前最直接提升DNN效果的方法是increasing their size,这里的size包 ...

随机推荐

  1. mysql数据库相关流程图/原理图

    mysql数据库相关流程图/原理图 1.mysql主从复制原理图 mysql主从复制原理是大厂后端的高频面试题,了解mysql主从复制原理非常有必要. 主从复制原理,简言之,就三步曲,如下: 主数据库 ...

  2. linux下Oracle与swap分区大小配置规划

    Oracle于Linux系统---交换空间大小规划 分三种常用情况(1)实际内存为1GB~2GB建议交换空间为内存的1.5倍 (2)实际内存为2GB~8GB建议交换空间与内存相同 (3)实际内存超过8 ...

  3. MATLAB聚类有效性评价指标(外部)

    MATLAB聚类有效性评价指标(外部) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多内容,请看:MATLAB.聚类.MATLAB聚类有效性评价指 ...

  4. Mybatis的动态sql以及分页

    mybatis动态sql If.trim.foreach <select id="selectBooksIn" resultType="com.jt.model.B ...

  5. LeetCode 5127. 删除被覆盖区间 Remove Covered Intervals

    地址 https://www.acwing.com/solution/LeetCode/content/7021/ 目描述给你一个区间列表,请你删除列表中被其他区间所覆盖的区间. 只有当 c < ...

  6. Java Web 学习(7) —— Spring MVC 之国际化

    Spring MVC 之国际化 i18n 与 l10n internationalization:国际化,以 i 开头,以 n 结尾,中间 18 个字母,简称 i18n. localization:本 ...

  7. 【Oracle】常用函数

    来源自:https://www.cnblogs.com/lxl57610/p/7442130.html Oracle SQL 提供了用于执行特定操作的专用函数.这些函数大大增强了 SQL 语言的功能. ...

  8. 修改SQL Server中的计算机名

    安装SQL Server之后,如果修改计算机名会导致登录异常,或者某些功能不能用,例如配置Replication时会提示如下错误: SQL Server replication requires th ...

  9. 牛客网sql刷题解析-完结

    查找最晚入职员工的所有信息 解题步骤: 题目:查询最晚入职员工的所有信息        目标:查询员工的所有信息 筛选条件:最晚入职           答案: SELECT *--查询所有信息就用* ...

  10. 《细说PHP》第四版 样章 第23章 自定义PHP接口规范 3

    23.2  接口实现的基础 大家都很了解函数在本地应用,通过名称调用函数执行,并通过传递不同参数,函数有不同执行,执行后给调用者返回结果.如果把一个函数做成一个接口远程访问,也需要这几个步骤.使用HT ...