洛谷 P5596 【XR-4】题
洛谷 P5596 【XR-4】题
题目描述
小 X 遇到了一道题:
给定自然数 a,ba,b,求满足下列条件的自然数对 (x,y)(x,y) 的个数:
y^2 - x^2 = ax + by2−x2=a**x+b
他不会,只好求助于精通数学的你。
如果有无限多个自然数对满足条件,那么你只需要输出 inf
即可。
输入格式
一行两个整数 a,ba,b。
输出格式
如果个数有限,一行一个整数,表示个数。
如果个数无限,一行一个字符串 inf
。
输入输出样例
输入 #1复制
输出 #1复制
输入 #2复制
输出 #2复制
输入 #3复制
输出 #3复制
输入 #4复制
输出 #4复制
输入 #5复制
输出 #5复制
说明/提示
【样例 1 说明】
(x,y) = (6,9)(x,y)=(6,9)
本题采用捆绑测试。
- Subtask 1(3 points):a = b = 0a=b=0。
- Subtask 2(6 points):0 \le a,b \le 20≤a,b≤2,不存在无限个数的情况。
- Subtask 3(9 points):0 \le a,b \le 1000≤a,b≤100,不存在无限个数的情况。
- Subtask 4(13 points):0 \le a,b \le 10^30≤a,b≤103,不存在无限个数的情况。
- Subtask 5(14 points):0 \le a \le 10^40≤a≤104,0 \le b \le 10^70≤b≤107。
- Subtask 6(14 points):a = 0a=0。
- Subtask 7(14 points):b = 0b=0。
- Subtask 8(27 points):无特殊限制。
对于 100%100% 的数据,0 \le a \le 10^80≤a≤108,0\le b \le 10^{15}0≤b≤1015。
题解:
这篇题解即将刷新本蒟蒻写的最认真的数学题解的记录。
蒟蒻太菜了考试的时候只拿了18分
蒟蒻一开始的时候是这么想的:
观察原方程:
\]
把它转化成函数形式:
\]
因为\(x,y\in N\),所以我一下子就想到了完全平方数这个东西。
如果能把右侧的部分换成这样的形式:
\]
那就显然会有无数组解。
然后我们展开,变成:
\]
和上面的对应上,就能列出一个等式关系:
当\(2k=a,k^2=b\)的时候,有无数组解。
一联立:
\]
这个时候有无数组解,输出\(inf\)即可。
然后蒟蒻就没有思路了。
冥思苦想了很长时间,最后还是用了暴力枚举,剪枝还剪错了,只好用了最最暴力的两重循环枚举来解决了这个问题。只得了18分。
今天看到了正解,惊喜地发现,我和大佬们的思路竟然重合了那么\(1\%\),至少我推出来了无解的情况应该是什么样子的,而这种情况正是通往“有解”的情况的大门。
我们这样考虑:
因为原式子是个二元二次方程。这个方程很难搞。
如果我们把它换为一元方程的话,肯定就会容易一些。
但是我们还要求可行解的个数...怎么办呢?
灵光一闪(希望大家记住这个思想)
我们可以构造\(x,y\)的映射关系,这样求出一个合法的\(x\),肯定就会有一个合法的\(y\)与之对应,我们就可以少搞很多东西。
那么,我们以此入手,分析原式子可得两边均大于等于0.
我们怎么对这个式子进行处理呢?有一个方法被蒟蒻起了个名字:归一法,这个方法通俗一点讲,就是把一个主元用一些辅元表示,然后通过一些辅元的关系和范围等求出主元的解。
那么我们就可以设\(t=y-x,t\in N\).
这样,原式子就被我们搞成了这样:
\]
整理:
\]
再整理:
\]
那么,在有解的范围内(也就是\(a/2\not= \sqrt{b}\)):
分类讨论:
一、\(\frac{a}{2}<\sqrt{b}\)时,有:
\]
二、\(\sqrt{b}<\frac{a}{2}\)时,有:
\]
注意特判分母不得零的情况!!(化身数学班主任)
因为这个\(t\)定义的时候就是关于\(x,y\)的式子,所以当我们找到一个合法的\(t\),我们就找到了一组解\((x,y)\)。
基于此,我们只需要在\(t\)的范围内循环找可行解即可。
最后强调,代码实现的坑点是取整和特判...
代码:
#include<cmath>
#include<cstdio>
#define int long long
using namespace std;
int a,b,l,r,ans,n;
signed main()
{
scanf("%lld%lld",&a,&b);
r=sqrt(b);
l=a/2;
if(r*r==b && r*2==a)
{
printf("inf");
return 0;
}
else if(a==1 && b==0)
{
printf("1");
return 0;
}
else if(r>=l)
{
for(int i=l+1;i<=r;i++)
if((abs(b-i*i))%(abs(2*i-a))==0)
ans++;
printf("%lld",ans);
return 0;
}
else
{
if(l*2==a)
n=l-1;
else
n=l;
for(int i=r;i<=n;i++)
if((abs(b-i*i))%(abs(2*i-a))==0)
ans++;
printf("%lld",ans);
return 0;
}
}
洛谷 P5596 【XR-4】题的更多相关文章
- 洛谷 P2791 幼儿园篮球题
洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_ ...
- 洛谷 P2220 [HAOI2012]容易题 数论
洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...
- 在洛谷3369 Treap模板题 中发现的Splay详解
本题的Splay写法(无指针Splay超详细) 前言 首先来讲...终于调出来了55555...调了整整3天..... 看到大部分大佬都是用指针来实现的Splay.小的只是按照Splay的核心思想和原 ...
- 洛谷 P4145 上帝造题的七分钟2 / 花神游历各国
洛谷 这题就是区间开根号,区间求和.我们可以分块做. 我们记布尔数组vis[i]表示第i块中元素是否全部为1. 因为显然当一个块中元素全部为1时,并不需要对它进行根号操作. 我们每个块暴力开根号,因为 ...
- 洛谷 P5596 【XR-4】题 题解
原题链接 本题只要 推式子 就可以了. \[y^2-x^2=ax + b \] \[a x + x^2 = y^2 - b \] \[4 x^2 + 4 ax = 4 y^2 - 4b \] \[(2 ...
- 【洛谷P5596】【XR-4】题
solution \(y^2-x^2=ax+b\) \(y^2=x^2+ax+b\) 当\(x^2+ax+b\)为完全平方式时\(Ans=inf\) \(x \leq y\) 不妨令 \(y=x+t\ ...
- 洛谷P1072Hankson的趣味题题解
题目 一道十分经典的数论题,在考场上也可以用暴力的算法来解决,从而得到\(50pts\)的较为可观的分数,而如果想要AC的话,我们观察原题给的数据范围\(a,b,c,d\)(为了好表示,分别代表a1, ...
- 洛谷P4145 上帝造题的⑦minutes ②
又是线段树. 区间开平方求和,套路题. 如果开到了1就不用再开下去了,否则直接到底. 记得 l > r 时交换 l r #include <cstdio> #include < ...
- 洛谷P1926 小书童—刷题大军【01背包】
题目链接:https://www.luogu.org/problemnew/show/P1926 题目背景 数学是火,点亮物理的灯:物理是灯,照亮化学的路:化学是路,通向生物的坑:生物是坑,埋葬学理的 ...
随机推荐
- 201871010116-祁英红《面向对象程序设计(java)》第十周学习总结
博文正文开头格式:(2分) 项目 内容 <面向对象程序设计(java)> https://www.cnblogs.com/nwnu-daizh/ 这个作业的要求在哪里 https://ww ...
- 201871010123-吴丽丽《面向对象程序设计(Java)》第一周学习总结
201871010123-吴丽丽<面向对象程序设计 ...
- 冒泡排序和sort,sorted排序函数
冒泡: # 轮数 元素个数 比较次数# 1 6 5# 2 5 4# 3 4 3# 4 3 2# 5 2 1 # 列表有n个元素,则应比较n-1轮,即循环次数n-1 a=[85,7,4,89,34,2] ...
- MySQL InnoDB 索引 (INDEX) 页结构
MySQL InnoDB 索引 (INDEX) 页结构 InnoDB 为了不同的目的而设计了不同类型的页,我们把用于存放记录的页叫做索引页 索引页内容 索引页分为以下部分: File Header:表 ...
- golang:exported function Script should have comment or be unexported
当自己定义的包被外部使用时,如果不遵循一定的规范,那么会出现讨厌的绿色纹条,还会警告: 虽然不会影响运行,但是也令人讨厌,那么如何解决这个问题呢? 为结构体或者变量或者方法添加注释,并且开头必须是结构 ...
- 14-scrapy框架(CrawlSpider)
CrawlSpider介绍 CrawlSpider是Spider的一个子类,意味着拥有Spider的方法,以及自己的方法,更加高效简洁.其中最显著的功能就是"LinkExtractors&q ...
- 多线程通信的两种方式? (可重入锁ReentrantLock和Object)
(一)Java中线程协作的最常见的两种方式: (1)利用Object的wait().notify()和notifyAll()方法及synchronized (2)使用Condition.Reentra ...
- 全网趣味网站分享:今日热榜/Pixiv高级搜索/win10激活工具/songtaste复活/sharesome汤不热替代者
1.回形针手册 由科普类视频节目“回形针PaperClip”近期提出的一个实用百科工具计划,计划名称是回形针手册. 包含了当下科技,农业等等各行各业的各种相关信息,计划刚刚开始! 关于回形针手册的详细 ...
- javascript解决在safari浏览器中使用history.back()返回上一页后页面不会刷新的问题
我们知道,在JavaScript中提供了一个window.history.back()方法用于返回上一页,另外也可以使用window.history.go(-1)返回上一页(跳转). 在其他的主流浏览 ...
- [转]Apache Doris资料汇总
参考资料 https://www.toutiao.com/i6709706901770207748/?tt_from=weixin&utm_campaign=client_share& ...