算法复杂度O(logn)详解
一.O(logn)代码小证明
我们先来看下面一段代码:
int cnt = 1;
while (cnt < n)
{
cnt *= 2;
//时间复杂度为O(1)的程序步骤序列
}
由于cnt每次在乘以2之后都会更加逼近n,也就是说,在有x次后,cnt将会大于n从而跳出循环,所以\(2 ^ x = n\), 也就是\(x = log_2n\),所以这个循环的复杂度为O(logn)
二.典型时间复杂度
$c$ 常数
$logN$ 对数级
$log ^ 2N$ 对数平方根
$N$ 线性级
$NlogN$
$N ^ 2$ 平方级
$N ^ 3$ 立方级
$2 ^ N$ 指数级
由此我们可以得知,\(logN\)的算法效率是最高的
三.常见的\(logN\)算法
1.对分查找
- (int)BinarySearch:(NSArray *)originArray element:(int)element
{
int low, mid, high;
low = 0; high = (int)originArray.count - 1;
while (low <= high) {
mid = (low + high) / 2;
if ([originArray[mid] intValue] < element) {
low = mid + 1;
} else if ([originArray[mid] intValue] > element) {
high = mid -1;
} else {
return mid;
}
}
return -1;
}
2. 欧几里得算法
- (unsigned int)Gcd:(unsigned int)m n:(unsigned int)n
{
unsigned int Rem;
while (n > 0) {
Rem = m % n;
m = n;
n = Rem;
}
return m;
}
3.幂运算
- (long)Pow:(long)x n:(unsigned int)n
{
if (n == 0) {
return 1;
}
if (n == 1) {
return x;
}
if ([self isEven:n]) {
return [self Pow:x * x n:n / 2];
} else {
return [self Pow:x * x n:n / 2] * x;
}
}
- (BOOL)isEven:(unsigned int)n
{
if (n % 2 == 0) {
return YES;
} else {
return NO;
}
}
四.$$库里的log函数
在$$库里有log()函数和log2()函数
log()函数的底数默认为自然对数的底数e
log2()函数的底数很显然就是2咯qwq
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
//#define DEBUG(x) cerr << #x << "=" << x << endl
int main()
{
cout << log(M_E) << endl;
cout << log2(2) << endl;
return 0;
}
然后我们就会得到
1
1
的结果
M_E代表的是自然对数的底数e
M_PI代表的是圆周率π
## 最后,也是最基本的最重要的
当题目的数据范围达到了$10^{18}$的时候,很显然就要用O(logn)的算法或数据结构了\]
算法复杂度O(logn)详解的更多相关文章
- 二分算法题目训练(二)——Exams详解
CodeForces732D——Exams 详解 Exam 题目描述(google翻译) Vasiliy的考试期限将持续n天.他必须通过m门科目的考试.受试者编号为1至m. 大约每天我们都知道当天可以 ...
- "二分法"-"折半法"-查找算法-之通俗易懂,图文+代码详解-java编程
转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找 ...
- BSGS算法_Baby steps giant steps算法(无扩展)详解
Baby Steps-Varsity Giant Step-Astronauts(May'n・椎名慶治) 阅读时可以听听这两首歌,加深对这个算法的理解.(Baby steps少女时代翻唱过,这个原唱反 ...
- Java经典算法四十例编程详解+程序实例
JAVA经典算法40例 [程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程 ...
- 【转】九大排序算法-C语言实现及详解
概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大, ...
- spfa算法及判负环详解
spfa (Shortest Path Faster Algorithm) 是一种单源最短路径的算法,基于Bellman-Ford算法上由队列优化实现. 什么是Bellman_Ford,百度内 ...
- KMP(梅开三度之数据结构详解版
前言 KMP算法是一种字符串匹配算法,其重中之重是next数组的构建,其代码的简洁与神奇使其广受关注. 但不难发现,acm中学到的KMP和数据结构里面学到的KMP并不一样o(︶︿︶)o 之前我写过ac ...
- Floyd算法(一)之 C语言详解
本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3 ...
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
随机推荐
- 图像处理之C语言实现二维卷积
在用C语言实现图像处理中,经常要用到二维卷积的运算,这个在matlab中是非常容易实现的,只需要conv2()就OK啦,而且速度非常的快.但是在C语言中就需要四层的for循环来实现了. 首先二维卷积的 ...
- 从头学pytorch(一):数据操作
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3 ...
- Linux - CentOS 7 安装 .Net Core 运行环境
阿里云的CentOS 7.7 64位,所需要的环境:MySql 5.7,.Net Core 2.2 ,Nginx 我这里用的 Xshell 工具,首先用root进入系统 版本信息 打开终端输入命令: ...
- C#基础之多线程与异步
1.基本概念 多线程与异步是两个不同概念,之所以把这两个放在一起学习,是因为这两者虽然有区别,但也有一定联系. 多线程是一个技术概念,相对于单线程而言,多线程是多个单线程同时处理逻辑.例如,假如说一个 ...
- shiro认证授权
一.shiro基础概念 Authentication:身份认证 / 登录,验证用户是不是拥有相应的身份: Authorization:授权,即权限验证,验证某个已认证的用户是否拥有某个权限:即判断用户 ...
- fiddler教程:抓包带锁的怎么办?HTTPS抓包介绍。
点击上方↑↑↑蓝字[协议分析与还原]关注我们 " 介绍Fiddler的HTTPS抓包功能." 这里首先回答下标题中的疑问,fiddler抓包带锁的原因是HTTPS流量抓包功能开启, ...
- 43.QT-访问远程SQLite数据库
在上章42.QT-QSqlQuery类操作SQLite数据库(创建.查询.删除.修改)详解学习了如何操作SQLite,本章来学习如何访问远程SQLite 1.首先设置共享,映射(用来实现远程访问) 将 ...
- LRC歌词原理和实现高仿Android网易云音乐
大家好,我们是爱学啊,今天给大家带来一篇关于LRC歌词原理和在Android上如何实现歌词逐行滚动的效果,本文来自[Android开发项目实战我的云音乐]课程:逐字滚动下一篇文章讲解. 效果图 相信大 ...
- Netfilter,获取http明文用户名和密码
目录 Netfilter简介 实验-target端 内核模块的操作 初始化netfilter 解析http包,获取用户名和密码 实验-hack端 遇到的问题 @ Netfilter简介 Netfilt ...
- 2018年Code Review状态报告
Code Review 代码评审是指在软件开发过程中,对源代码的系统性检查.通常的目的是查找系统缺陷,保证软件总体质量和提高开发者自身水平. Code Review是轻量级代码评审,相对于正式代码评审 ...