题目链接:http://poj.org/problem?id=3660

Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ AN; 1 ≤ BN; AB), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2

题目大意:有N头牛,评以N个等级,各不相同,先给出部分牛的等级的高低关系,问最多能确定多少头牛的等级
解题思路:一头牛的等级,当且仅当它与其它N-1头牛的关系确定时确定,于是我们可以将牛的等级关系看做一张图,然后进行适当的松弛操作,得到任意两点的关系,再对没一头牛进行检查即可
 #include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm> using namespace std; int map[][], INF = 0x3f3f3f3f; int main(){
ios::sync_with_stdio( false ); int n, m;
cin >> n >> m;
memset( map, INF, sizeof( map ) ); int x, y;
for( int i = ; i < m; i++ ){
cin >> x >> y;
map[x][y] = ; //x战胜y
map[y][x] = -; //y败于x
} for( int j = ; j <= n; j++ )
for( int i = ; i <= n; i++ )
for( int k = ; k <= n; k++ ){
if( map[i][j] == map[j][k] && ( map[i][j] == || map[i][j] == - ) ) //进行松弛
map[i][k] = map[i][j];
} int ans = ;
for( int i = ; i <= n; i++ ){
int sum = ;
for( int j = ; j <= n; j++ ){
if( map[i][j] != INF )
sum++;
}
if( sum == n - )
ans++;
} cout << ans << endl; return ;
}
												

POJ-3660 Cow Contest( 最短路 )的更多相关文章

  1. POJ 3660 Cow Contest ( 最短路松弛思想应用 && Floyd求传递闭包 )

    题意 : 给出 N 头奶牛在比赛的结果,问你最多的能根据给出结果确定其名次的奶牛头数.结果给出的形式为 A  B 代表在比赛当中 A 战胜了 B 分析 : 对于一头奶牛来说,如果我们能确定其他 N - ...

  2. POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包)

    POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包) Description N (1 ≤ N ...

  3. POJ 3660 Cow Contest

    题目链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  4. POJ 3660 Cow Contest 传递闭包+Floyd

    原题链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  5. POJ 3660—— Cow Contest——————【Floyd传递闭包】

    Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  6. POJ - 3660 Cow Contest 传递闭包floyed算法

    Cow Contest POJ - 3660 :http://poj.org/problem?id=3660   参考:https://www.cnblogs.com/kuangbin/p/31408 ...

  7. POJ 3660 Cow Contest (floyd求联通关系)

    Cow Contest 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/H Description N (1 ≤ N ≤ 100) ...

  8. POJ 3660 Cow Contest(传递闭包floyed算法)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5989   Accepted: 3234 Descr ...

  9. POJ 3660 Cow Contest(Floyd求传递闭包(可达矩阵))

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16341   Accepted: 9146 Desc ...

  10. ACM: POJ 3660 Cow Contest - Floyd算法

    链接 Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Descri ...

随机推荐

  1. 【Java】You have an error in your SQL syntax ...

    详情如下: You have an error in your SQL syntax; check the manual that corresponds to your MySQL server v ...

  2. React进阶之路书籍笔记

    React进阶之路: "于复合类型的变量,变量名不指向数据,而是指向数据所在的地址.const命令只是保证变量名指向的地址不变,并不保证该地址的数据不变,所以将一个对象声明为常量必须非常小心 ...

  3. HC-08 BLE资料

    1.1 特点简介 HC-08蓝牙串口通信模块是新一代的基于Bluetooth Specification V4.0 BLE蓝牙协议的数传模块.无线工作频段为 2.4GHz ISM,调制方式是 GFSK ...

  4. zmnXAglTcg

    #include <map>#include <cmath>#include <stack>#include <queue>#include <l ...

  5. 读JDK源码集合部分

    以前读过一遍JDK源码的集合部分,读完了一段时间后忘了,直到有一次面试简历上还写着读过JDK集合部分的源码,但面试官让我说说,感觉记得不是很清楚了,回答的也模模糊糊的,哎,老了记性越来越差了,所以再回 ...

  6. 史上最全面的SignalR系列教程-3、SignalR 实现推送功能-集线器类实现方式

    1.概述 通过前两篇 史上最全面的SignalR系列教程-1.认识SignalR 史上最全面的SignalR系列教程-2.SignalR 实现推送功能-永久连接类实现方式 文章对SignalR的介绍, ...

  7. Appium+python自动化(三十)- 实现代码与数据分离 - 数据配置-yaml(超详解)

    简介 本篇文章主要介绍了python中yaml配置文件模块的使用让其完成数据和代码的分离,宏哥觉得挺不错的,于是就义无反顾地分享给大家,也给大家做个参考.一起跟随宏哥过来看看吧. 思考问题 前面我们配 ...

  8. ZooKeeper系列(二)—— Zookeeper 单机环境和集群环境搭建

    一.单机环境搭建 1.1 下载 下载对应版本 Zookeeper,这里我下载的版本 3.4.14.官方下载地址:https://archive.apache.org/dist/zookeeper/ # ...

  9. 用 Python 分析上网记录,发现了很多不可思议的事

    摘要:分享个​ Python 神工具.​ 长时间使用浏览器会积累大量浏览器历史记录,这些是很隐私的数据,里面甚至可能有一些不可描述的网站或者搜索记录不想让别人知道. 不过,我们自己可能会感兴趣,天天上 ...

  10. Python机器学习之数据探索可视化库yellowbrick

    # 背景介绍 从学sklearn时,除了算法的坎要过,还得学习matplotlib可视化,对我的实践应用而言,可视化更重要一些,然而matplotlib的易用性和美观性确实不敢恭维.陆续使用过plot ...