传送门:https://www.luogu.org/problemnew/show/P1027

题意:

    图中有n个城市,每个城市有4个机场在矩形的四个顶点上。一个城市间的机场可以通过高铁通达,不同城市间要通过飞机。现在问从s到t城市最少需要多少的费用。

思路:

    已知矩形的三个顶点,可以用勾股定理确定斜边后,利用平行四边形原理——两对对角顶点的x之和是相同的,y之和也是相同的得到第四个顶点。然后用求最短路的dji即可。

  

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;
typedef pair<double,int>pdi;
//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
ll mod = ;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
int c1,s,t,n;
double dis[maxn];
struct node
{
int x,y,bl;
int cst;
}a[maxn];
void getp(int x1,int y1,int x2,int y2,int x3,int y3,int i){
int ab = (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2);
int ac = (x1-x3)*(x1-x3) + (y1-y3)*(y1-y3);
int bc = (x2-x3)*(x2-x3) + (y2-y3)*(y2-y3);
int x4,y4; if(ab + ac == bc) x4 = x2 + x3 - x1, y4 = y2 + y3 - y1;
if(ab + bc == ac) x4 = x1 + x3 - x2, y4 = y1 + y3 - y2;
if(ac + bc == ab) x4 = x1 + x2 - x3, y4 = y1 + y2 - y3;
a[i+].x = x4;
a[i+].y = y4;
}
double getdis(int i,int j){
return sqrt(1.0*(a[i].x - a[j].x)*(a[i].x - a[j].x) + 1.0*(a[i].y - a[j].y)*(a[i].y - a[j].y));
}
void dji(){
for(int i=; i<=*n; i++)dis[i] = 1000000000.9;
dis[(s-) * +] = dis[(s-) * +] = dis[(s-) * +] = dis[(s-) * + ] =;
priority_queue<pdi>que;
que.push(pdi(0.0,(s-) * +));
que.push(pdi(0.0,(s-) * +));
que.push(pdi(0.0,(s-) * +));
que.push(pdi(0.0,(s-) * +));
while(!que.empty()){
pdi tmp = que.top(); que.pop();
if(dis[tmp.se] < -*tmp.fi)continue;
for(int i=; i<=*n; i++){
if(tmp.se != i){
double d = getdis(tmp.se, i);
if(a[tmp.se].bl == a[i].bl) {
if(dis[i] > dis[tmp.se] +1.0* a[i].cst * d){
dis[i] = dis[tmp.se] + 1.0*a[i].cst * d;
que.push(pdi(-dis[i],i));
}
}
else {
if(dis[i] > dis[tmp.se] + 1.0*c1 * d){
dis[i] = dis[tmp.se] + 1.0*c1 * d;
que.push(pdi(-dis[i],i));
}
}
}
}
} }
int main(){
int T; scanf("%d", &T);
while(T--){
scanf("%d%d%d%d",&n, &c1, &s, &t);
for(int i=; i<=*n; i+=){
int cst;
scanf("%d%d%d%d%d%d%d", &a[i].x,&a[i].y,&a[i+].x, &a[i+].y,&a[i+].x, &a[i+].y,&cst);
getp(a[i].x, a[i].y,a[i+].x, a[i+].y,a[i+].x, a[i+].y,i);
a[i+].cst = a[i].cst = a[i+].cst = a[i+].cst = cst;
a[i+].bl = a[i].bl = a[i+].bl = a[i+].bl = (i-)/ + ;
} dji();
double ans = 1000000000.9;
ans = min(ans, dis[(t-)*+]);
ans = min(ans, dis[(t-)*+]);
ans = min(ans, dis[(t-)*+]);
ans = min(ans, dis[(t-)*+]);
printf("%.1f\n", ans); }
return ;
}

P1027

Luogu-P1027 Car的旅行路线 已知三点确定矩形 + 最短路的更多相关文章

  1. luogu P1027 Car的旅行路线

    题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单位 ...

  2. 洛谷P1027 Car的旅行路线

    洛谷P1027 Car的旅行路线 题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速 ...

  3. 洛谷 P1027 Car的旅行路线

    P1027 Car的旅行路线 题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路 ...

  4. 洛谷 P1027 Car的旅行路线 最短路+Dijkstra算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 总结 题面 题目链接 P1027 Car的旅行路线 题目描述 又到暑假了,住在 ...

  5. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  6. [NOIP2001] 提高组 洛谷P1027 Car的旅行路线

    题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于一个 矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单 ...

  7. P1027 car的旅行路线

    car的旅行路线 洛谷链接 这个题关键就是 如何把每个点表示出来,其实求出四个点的坐标后,只需要把这些点连接起来,用一遍folyed求出最短路径就好了. 代码: #include<cmath&g ...

  8. 【NX二次开发】三点画圆,三角形外心,已知三点求圆心

    已知P1.P2.P3,求点O 算法:三点不在一条直线上时,通过连接任意两点,作中垂线.任意两条中垂线的交点是圆心.

  9. 洛谷——P1027 Car的旅行路线

    https://www.luogu.org/problem/show?pid=1027#sub 题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于 ...

随机推荐

  1. 2. Java基本数据类型及运算符

    1. 计算机数制 1.1 计算机信息单位 阅读二进制.字节.字长,回答以下问题: 1. 计算机中采用什么进制存储信息,它的优点是什么 2. 什么是位.字节 3. K.M.G.T.P之间的转换 4. 什 ...

  2. 一份关于.NET Core云原生采用情况调查

    调查背景 Kubernetes 越来越多地在生产环境中使用,围绕 Kubernetes 的整个生态系统在不断演进,新的工具和解决方案也在持续发布.云原生计算的发展驱动着各个企业转向遵循云原生原则(启动 ...

  3. 【iOS】创建真机调试证书

    今天第一次完整的在一个开发者账号里添加证书,刚接触,还真有些不熟悉,还好找到了一篇不错的文章:iOS开发:创建真机调试证书 ,做了很详细的介绍. 分享一下!!

  4. Eclipse "Adb failed to restart !"

    今天遇到这个问题,如图所示: 上网找了下,原来是电脑上的各种手机助手抢占了手机链接.http://blog.csdn.net/zhufuing/article/details/19398125 说得很 ...

  5. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  6. js的位运算(其它语言也通用)

    左移运算符(<<) 该运算符有2个运算数,a<<b,将a左移相当于a乘以2的b次方,2个运算符要求是整数,或可以转换成整数的. 如:1<<2 =4 "1& ...

  7. 从js 讲解时间复杂度和空间复杂度

    1. 博客背景 今天有同事在检查代码的时候,由于函数写的性能不是很好,被打回去重构了,细思极恐,今天和大家分享一篇用js讲解的时间复杂度和空间复杂度的博客 2. 复杂度的表示方式 之前有看过的,你可能 ...

  8. Redis总结(八)如何搭建高可用的Redis集群

    以前总结Redis 的一些基本的安装和使用,大家可以这这里查看Redis 系列文章:https://www.cnblogs.com/zhangweizhong/category/771056.html ...

  9. JS构建多端应用

    JS构建多端应用 一,需求与介绍 1.1,介绍 1,Taro 是一套遵循 React语法规范的 多端开发 解决方案.现如今市面上端的形态多种多样,Web.React-Native.微信小程序等各种端大 ...

  10. java代码之美(13)--- Predicate详解

    java代码之美(13)--- Predicate详解 遇到Predicate是自己在自定义Mybatis拦截器的时候,在拦截器中我们是通过反射机制获取对象的所有属性,再查看这些属性上是否有我们自定义 ...