L1 loss, L2 loss以及Smooth L1 Loss的对比
总结对比下\(L_1\) 损失函数,\(L_2\) 损失函数以及\(\text{Smooth} L_1\) 损失函数的优缺点。
均方误差MSE (\(L_2\) Loss)
均方误差(Mean Square Error,MSE)是模型预测值\(f(x)\) 与真实样本值\(y\) 之间差值平方的平均值,其公式如下
\]
其中,\(y_i\)和\(f(x_i)\)分别表示第\(i\)个样本的真实值及其对应的预测值,\(n\)为样本的个数。
忽略下标\(i\) ,设\(n=1\),以\(f(x) - y\)为横轴,MSE的值为纵轴,得到函数的图形如下:
MSE的函数曲线光滑、连续,处处可导,便于使用梯度下降算法,是一种常用的损失函数。 而且,随着误差的减小,梯度也在减小,这有利于收敛,即使使用固定的学习速率,也能较快的收敛到最小值。
当\(y\)和\(f(x)\)也就是真实值和预测值的差值大于1时,会放大误差;而当差值小于1时,则会缩小误差,这是平方运算决定的。MSE对于较大的误差(\(>1\))给予较大的惩罚,较小的误差(\(<1\))给予较小的惩罚。也就是说,对离群点比较敏感,受其影响较大。
如果样本中存在离群点,MSE会给离群点更高的权重,这就会牺牲其他正常点数据的预测效果,最终降低整体的模型性能。 如下图:
可见,使用 MSE 损失函数,受离群点的影响较大,虽然样本中只有 5 个离群点,但是拟合的直线还是比较偏向于离群点。
平均绝对误差(\(L_1\) Loss)
平均绝对误差(Mean Absolute Error,MAE) 是指模型预测值\(f(x)\)和真实值\(y\)之间距离的平均值,其公式如下:
\]
忽略下标\(i\) ,设\(n=1\),以\(f(x) - y\)为横轴,MAE的值为纵轴,得到函数的图形如下:
MAE曲线连续,但是在\(y-f(x)=0\)处不可导。而且 MAE 大部分情况下梯度都是相等的,这意味着即使对于小的损失值,其梯度也是大的。这不利于函数的收敛和模型的学习。但是,无论对于什么样的输入值,都有着稳定的梯度,不会导致梯度爆炸问题,具有较为稳健性的解。
相比于MSE,MAE有个优点就是,对于离群点不那么敏感。因为MAE计算的是误差\(y-f(x)\)的绝对值,对于任意大小的差值,其惩罚都是固定的。
针对上面带有离群点的数据,MAE的效果要好于MSE。
显然,使用 MAE 损失函数,受离群点的影响较小,拟合直线能够较好地表征正常数据的分布情况。
MSE和MAE的选择
从梯度的求解以及收敛上,MSE是由于MAE的。MSE处处可导,而且梯度值也是动态变化的,能够快速的收敛;而MAE在0点处不可导,且其梯度保持不变。对于很小的损失值其梯度也很大,在深度学习中,就需要使用变化的学习率,在损失值很小时降低学习率。
对离群(异常)值得处理上,MAE要明显好于MSE。
如果离群点(异常值)需要被检测出来,则可以选择MSE作为损失函数;如果离群点只是当做受损的数据处理,则可以选择MAE作为损失函数。
总之,MAE作为损失函数更稳定,并且对离群值不敏感,但是其导数不连续,求解效率低。另外,在深度学习中,收敛较慢。MSE导数求解速度高,但是其对离群值敏感,不过可以将离群值的导数设为0(导数值大于某个阈值)来避免这种情况。
在某些情况下,上述两种损失函数都不能满足需求。例如,若数据中90%的样本对应的目标值为150,剩下10%在0到30之间。那么使用MAE作为损失函数的模型可能会忽视10%的异常点,而对所有样本的预测值都为150。这是因为模型会按中位数来预测。而使用MSE的模型则会给出很多介于0到30的预测值,因为模型会向异常点偏移。
这种情况下,MSE和MAE都是不可取的,简单的办法是对目标变量进行变换,或者使用别的损失函数,例如:Huber,Log-Cosh以及分位数损失等。
Smooth \(L_1\) Loss
在Faster R-CNN以及SSD中对边框的回归使用的损失函数都是Smooth \(L_1\) 作为损失函数,
\]
其中,\(x = f(x_i) - y_i\) 为真实值和预测值的差值。
Smooth \(L_1\) 能从两个方面限制梯度:
- 当预测框与 ground truth 差别过大时,梯度值不至于过大;
- 当预测框与 ground truth 差别很小时,梯度值足够小。
对比\(L_1\) Loss 和 \(L_2\) Loss
其中\(x\)为预测框与groud truth之间的差异:
L_2(x) &= x^2 \\
L_1(x) &= x \\
smooth_{L_1}(x) &=\left \{ \begin{array}{c} 0.5x^2 & if \mid x \mid <1 \\ \mid x \mid - 0.5 & otherwise \end{array} \right.
\end{align}
\]
上面损失函数对\(x\)的导数为:
\frac{\partial L_2(x)}{\partial x} &= 2x \\
\frac{\partial L_1(x)}{\partial x} &= \left \{ \begin{array}{c} 1 & \text{if } x \geq 0 \\ -1 & \text{otherwise} \end{array} \right. \\
\frac{\partial smooth_{L_1}(x)}{\partial x} &=\left \{ \begin{array}{c} x & if \mid x \mid <1 \\ \pm1 & otherwise \end{array} \right.
\end{align}
\]
上面导数可以看出:
根据公式-4,当\(x\)增大时,\(L_2\)的损失也增大。 这就导致在训练初期,预测值与 groud truth 差异过于大时,损失函数对预测值的梯度十分大,训练不稳定。
根据公式-5,\(L_1\)对\(x\)的导数为常数,在训练的后期,预测值与ground truth差异很小时,\(L_1\)的导数的绝对值仍然为1,而 learning rate 如果不变,损失函数将在稳定值附近波动,难以继续收敛以达到更高精度。
根据公式-6,\(\text{Smotth } L_1\)在\(x\)较小时,对\(x\)的梯度也会变小。 而当\(x\)较大时,对\(x\)的梯度的上限为1,也不会太大以至于破坏网络参数。\(Smooth L_1\)完美的避开了\(L_1\)和\(L_2\)作为损失函数的缺陷。
\(L_1\) Loss ,\(L_2\) Loss以及\(Smooth L_1\) 放在一起的函数曲线对比
从上面可以看出,该函数实际上就是一个分段函数,在[-1,1]之间实际上就是L2损失,这样解决了L1的不光滑问题,在[-1,1]区间外,实际上就是L1损失,这样就解决了离群点梯度爆炸的问题
实现 (PyTorch)
def _smooth_l1_loss(input, target, reduction='none'):
# type: (Tensor, Tensor) -> Tensor
t = torch.abs(input - target)
ret = torch.where(t < 1, 0.5 * t ** 2, t - 0.5)
if reduction != 'none':
ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
return ret
也可以添加个参数beta
这样就可以控制,什么范围的误差使用MSE,什么范围内的误差使用MAE了。
def smooth_l1_loss(input, target, beta=1. / 9, reduction = 'none'):
"""
very similar to the smooth_l1_loss from pytorch, but with
the extra beta parameter
"""
n = torch.abs(input - target)
cond = n < beta
ret = torch.where(cond, 0.5 * n ** 2 / beta, n - 0.5 * beta)
if reduction != 'none':
ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
return ret
总结
对于大多数CNN网络,我们一般是使用L2-loss而不是L1-loss,因为L2-loss的收敛速度要比L1-loss要快得多。
对于边框预测回归问题,通常也可以选择平方损失函数(L2损失),但L2范数的缺点是当存在离群点(outliers)的时候,这些点会占loss的主要组成部分。比如说真实值为1,预测10次,有一次预测值为1000,其余次的预测值为1左右,显然loss值主要由1000决定。所以FastRCNN采用稍微缓和一点绝对损失函数(smooth L1损失),它是随着误差线性增长,而不是平方增长。
Smooth L1 和 L1 Loss 函数的区别在于,L1 Loss 在0点处导数不唯一,可能影响收敛。Smooth L1的解决办法是在 0 点附近使用平方函数使得它更加平滑。
Smooth L1的优点
- 相比于L1损失函数,可以收敛得更快。
- 相比于L2损失函数,对离群点、异常值不敏感,梯度变化相对更小,训练时不容易跑飞。
L1 loss, L2 loss以及Smooth L1 Loss的对比的更多相关文章
- 机器学习中的L1、L2正则化
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L ...
- Task5.PyTorch实现L1,L2正则化以及Dropout
1.了解知道Dropout原理 深度学习网路中,参数多,可能出现过拟合及费时问题.为了解决这一问题,通过实验,在2012年,Hinton在其论文<Improving neural network ...
- 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss
回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记 版权声明: ...
- 目标检测——Faster R_CNN使用smooth L1作为bbox的回归损失函数原因
前情提要—— 网上关于目标检测框架——faster r_cnn有太多太好的博文,这是我在组会讲述faster r_cnn这一框架时被人问到的一个点,当时没答上来,于是会下好好百度和搜索一下研究了一下这 ...
- smooth L1损失函数
当预测值与目标值相差很大时,L2 Loss的梯度为(x-t),容易产生梯度爆炸,L1 Loss的梯度为常数,通过使用Smooth L1 Loss,在预测值与目标值相差较大时,由L2 Loss转为L1 ...
- paper 126:[转载] 机器学习中的范数规则化之(一)L0、L1与L2范数
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数(转)
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...
- L0、L1与L2范数、核范数(转)
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...
- 机器学习中的范数规则化之(一)L0、L1与L2范数 非常好,必看
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化. ...
随机推荐
- 1005 csp-s 60 凉凉
T1 嘟嘟噜 上来一看数据范围1e9就蒙蔽,然后不知所措的打了一个 $ O(n)$的无脑算法,由于本人真的脑小,导致O(n)的柿子推了好长时间,导致心态崩了,然后........ 今天能明白了log的 ...
- 编程工具 | VScode 使用快捷键
按 Press 功能 Function Ctrl + Shift + P,F1 显示命令面板 Show Command Palette Ctrl + P 快速打开 Quick Open Ctrl + ...
- 易初大数据 2019年11月8日 linux 王庆超
◆linux系统的特点: (1)完全免费. (2)高效.安全.稳定. (3)支持多种硬件平台. (4)友好的用户界面. (5)强大的网络功能. (6)支持多任务.多用户. ◆linux体系: 1.li ...
- ThreadLocal<T> 源码解析
在activeJDBC框架内部的实现中看到了 ThreadLocal 这个类,记录下了每个线程独有的连接 private static final ThreadLocal<HashMap< ...
- fpm打包神奇rpm包升级python2.7.16
fpm打包神器参考文档:https://www.cnblogs.com/flintlovesam/p/6594635.html FPM的安装:安装ruby环境和gem命令: yum -y instal ...
- 问题:做EsayUI分页报错 $(...).pagination is not a function之后我把<jsp:include page="top.jsp"/>去掉就好了,有大神知道为什么吗?另外分页按键放在那里好些,我放到form表单下,就开始显示,点一下后就没有了
<%@ page language="java" contentType="text/html; charset=utf-8" pageEncoding= ...
- MD5 加盐加密
一.概述 MD5(Message Digest Algorithm 5),是一种散列算法,是不可逆的,即通过md5加密之后没办法得到原文,没有解密算法. 在一般的项目中都会有登录注册功能,最简单的, ...
- Django 自定义分页器
为什么要实现分页? 在大部分网站中分页的功能都是必要的,尤其是在后台管理中分页更是不可或缺 分页能带给用户更好的体验,也能减轻服务器的压力 对于分页来说,有许多方法都可以实现 例如把数据全部读取出来在 ...
- 力扣(LeetCode)单值二叉树 个人题解
如果二叉树每个节点都具有相同的值,那么该二叉树就是单值二叉树. 只有给定的树是单值二叉树时,才返回 true:否则返回 false. 示例 1: 输入:[1,1,1,1,1,null,1] 输出:tr ...
- ef+Npoi导出百万行excel之踩坑记
最近在做一个需求是导出较大的excel,本文是记录我在做需求过程中遇到的几个问题和解题方法,给大家分享一下,一来可以帮助同样遇到问题的朋友,二呢,各位大神也许有更好的方法可以指点小弟一 ...