You surely have never heard of this new planet surface exploration scheme, as it is being carried out in a project with utmost secrecy. The scheme is expected to cut costs of conventional rover-type mobile explorers considerably, using projected-type equipment nicknamed "observation bullets".

Bullets do not have any active mobile abilities of their own, which is the main reason of their cost-efficiency. Each of the bullets, after being shot out on a launcher given its initial velocity, makes a parabolic trajectory until it touches down. It bounces on the surface and makes another parabolic trajectory. This will be repeated virtually infinitely.

We want each of the bullets to bounce precisely at the respective spot of interest on the planet surface, adjusting its initial velocity. A variety of sensors in the bullet can gather valuable data at this instant of bounce, and send them to the observation base. Although this may sound like a conventional target shooting practice, there are several issues that make the problem more difficult.

  • There may be some obstacles between the launcher and the target spot. The obstacles stand upright and are very thin that we can ignore their widths. Once the bullet touches any of the obstacles, we cannot be sure of its trajectory thereafter. So we have to plan launches to avoid these obstacles.
  • Launching the bullet almost vertically in a speed high enough, we can easily make it hit the target without touching any of the obstacles, but giving a high initial speed is energy-consuming. Energy is extremely precious in space exploration, and the initial speed of the bullet should be minimized. Making the bullet bounce a number of times may make the bullet reach the target with lower initial speed.
  • The bullet should bounce, however, no more than a given number of times. Although the body of the bullet is made strong enough, some of the sensors inside may not stand repetitive shocks. The allowed numbers of bounces vary on the type of the observation bullets.

You are summoned engineering assistance to this project to author a smart program that tells the minimum required initial speed of the bullet to accomplish the mission.

Figure D.1 gives a sketch of a situation, roughly corresponding to the situation of the Sample Input 4 given below.

Figure D.1. A sample situation

You can assume the following.

  • The atmosphere of the planet is so thin that atmospheric resistance can be ignored.
  • The planet is large enough so that its surface can be approximated to be a completely flat plane.
  • The gravity acceleration can be approximated to be constant up to the highest points a bullet can reach.

These mean that the bullets fly along a perfect parabolic trajectory.

You can also assume the following.

  • The surface of the planet and the bullets are made so hard that bounces can be approximated as elastic collisions. In other words, loss of kinetic energy on bounces can be ignored. As we can also ignore the atmospheric resistance, the velocity of a bullet immediately after a bounce is equal to the velocity immediately after its launch.
  • The bullets are made compact enough to ignore their sizes.
  • The launcher is also built compact enough to ignore its height.

You, a programming genius, may not be an expert in physics. Let us review basics of rigid-body dynamics.

We will describe here the velocity of the bullet v with its horizontal and vertical components vx and vy (positive meaning upward). The initial velocity has the components vix and viy, that is, immediately after the launch of the bullet, vx = vix and vy = viy hold. We denote the horizontal distance of the bullet from the launcher as x and its altitude as y at time t.

  • The horizontal velocity component of the bullet is kept constant during its flight when atmospheric resistance is ignored. Thus the horizontal distance from the launcher is proportional to the time elapsed.

    x=vixt(1)(1)x=vixt

  • The vertical velocity component vy is gradually decelerated by the gravity. With the gravity acceleration of g, the following differential equation holds during the flight.

    dvydt=−g(2)(2)dvydt=−g

    Solving this with the initial conditions of vy = viy and y = 0 when t = 0, we obtain the following.

    y==−12gt2+viyt−(12gt−viy)t(3)(4)(3)y=−12gt2+viyt(4)=−(12gt−viy)t

    The equation (4) tells that the bullet reaches the ground again when t = 2viy/g. Thus, the distance of the point of the bounce from the launcher is 2vixviy/g. In other words, to make the bullet fly the distance of l, the two components of the initial velocity should satisfy 2vixviy = lg.

  • Eliminating the parameter t from the simultaneous equations above, we obtain the following equation that escribes the parabolic trajectory of the bullet.

    y=−(g2v2ix)x2+(viyvix)x(5)(5)y=−(g2vix2)x2+(viyvix)x

For ease of computation, a special unit system is used in this project, according to which the gravity acceleration g of the planet is exactly 1.0.

Input

The input consists of several tests case with the following format.

d n bp1 h1p2 h2⋮pn hnd n bp1 h1p2 h2⋮pn hn

For each test, the first line contains three integers, dn, and b. Here, d is the distance from the launcher to the target spot (1 ≤ d ≤ 10000), n is the number of obstacles (1 ≤ n ≤ 10), and b is the maximum number of bounces allowed, not including the bounce at the target spot (0 ≤ b ≤ 15).

Each of the following n lines has two integers. In the k-th line, pk is the position of the k-th obstacle, its distance from the launcher, and hk is its height from the ground level. You can assume that 0 < p1, pk < pk + 1 for k = 1, …, n − 1, and pn < d. You can also assume that 1 ≤ hk ≤ 10000 for k = 1, …, n.

Output

Output the smallest possible initial speed vi that makes the bullet reach the target. The initial speed vi of the bullet is defined as follows.

vi=v2ix+v2iy−−−−−−−√vi=vix2+viy2

The output should not contain an error greater than 0.0001.

Sample Input

100 1 0
50 100 10 1 0
4 2 100 4 3
20 10
30 10
40 10
50 10 343 3 2
56 42
190 27
286 34

Sample Output

14.57738
3.16228
7.78175
11.08710

题意:就是一颗子弹,由一定初速度射出(不考虑空气阻力),使其能够越过给的每一个障碍物,并且在给定次数范围内,出速度熟读最小;题解:这题我们可以暴力枚举每一个K(敲击地板的次数),其实我们可以用L/K,将区间平移,转移到一个区间里面,这里判断一下在每一个落地的地方有没有障碍物,有的话就不满足题意了,忽略即可;对于每个满足的K,我们用题中给的公式;将Vy^2表示出来,根据关系,求出Vx^2,不断维护Vx^2+Vy^2的最大值;

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std; #define EXP 0.00000001
#define INF 1e17 struct node{
double p,h;
} c[11]; double Dou_mod(double a,double b)
{
if (a<b) return a;
int t=floor(a/b);
return (a-b*t);
} int main()
{
int n,b,d;
double ans;
while(cin>>d>>n>>b)
{
for(int i=0;i<n;i++)
cin>>c[i].p>>c[i].h;
double maxx,minn=INF,vx2,vy2;
for(int i=0;i<=b;i++)
{
maxx=0;
double x0=(d*1.0)/(i+1.0);
bool yep=1;
for(int j=0;j<n;j++)
{
double p=Dou_mod(c[j].p,x0);
double h=c[j].h;
if (fabs(p-0)<EXP) { yep=0;break; }
maxx=max(maxx,x0*x0*h/(2.0*p*(x0-p)));
}
if (!yep) continue;
vy2=maxx;
vx2=x0*x0/(4.0*vy2);
if (vx2>vy2) vx2=vy2=x0/2.0;
minn=min(vy2+vx2,minn);
}
ans=sqrt(minn);
printf("%.5lf\n",ans);
}
}

CSU oj 2092-Space Golf的更多相关文章

  1. Codeforces Gym 100803D Space Golf 物理题

    Space Golf 题目连接: http://codeforces.com/gym/100803/attachments Description You surely have never hear ...

  2. csu oj 1344: Special Judge

    Description Given a positive integer n, find two non-negative integers a, b such that a2 + b2 = n. I ...

  3. csu oj 1339: 最后一滴血

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1339 1339: 最后一滴血 Time Limit: 1 Sec  Memory Limit: 1 ...

  4. csu oj 1330 字符识别?

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1330 1330: 字符识别? Time Limit: 1 Sec  Memory Limit: 1 ...

  5. csu oj 1811: Tree Intersection (启发式合并)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1811 给你一棵树,每个节点有一个颜色.问删除一条边形成两棵子树,两棵子树有多少种颜色是有 ...

  6. csu oj 1804: 有向无环图 (dfs回溯)

    题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 中文题意就不说了. dfs从底到根回溯即可,看代码应该能清楚. //#pragma ...

  7. Space Golf~物理题目

    Description You surely have never heard of this new planet surface exploration scheme, as it is bein ...

  8. csu oj 1343 Long Long

    Description 现在有两个单调递增序列,第一个序列有N个整数,第二个序列有M个整数,现在你可以从第一个序列中选一个数x,然后从第二个序列中选一个数y,那么有多少种情况满足x+y<=K呢? ...

  9. csu oj 1341 string and arrays

    Description 有一个N*N的字符矩阵,从上到下依次记为第1行,第2行,……,第N行,从左至右依次记为第1列,第2列,……,第N列. 对于这个矩阵会进行一系列操作,但这些操作只有两类: (1) ...

随机推荐

  1. 单元测试JUnit案例

    被测试模块 package packagedemo; public class Largest { public int minimal(int [] array1) { int index = 0 ...

  2. 资深架构师Sum的故事:正则!入门就是这样简单

    | 故事背景 职场如战场!Sum带领三个小队友用了两周,成功把代理功能给干出来了.如果说产品经理是最魔鬼的指挥官,那测试就是最魔鬼的教官.这两周,让Sum深深领略了什么是X市的日出. 不过话又说回来, ...

  3. vue根据不同环境进行编译打包

    工作中我们在开发过程中,有很多的开发环境,如果我们不进行统一配置,那么我们只能手动进行更改,这样会给我们带来诸多不便,所以我们要配置根据不同的环境来进行编译打包. 先看一下我的项目目录: 在confi ...

  4. PageHelper分页+排序

    使用pageHelper插件来分页,只需在执行sql前用即可 String orderBy = 排序字段 + " desc";//按照(数据库)排序字段 倒序 排序 PageHel ...

  5. bat脚本知识总结

    1常用基本命令 1.1 @ 它的作用是让执行窗口中不显示它后面这一行的命令本身 1.2 echo 它其实是一个开关命令,就是说它只有两种状态:打开和关闭.于是就有了echo on 和echo off两 ...

  6. PHP文件上传和下载

    第 1 章 文件上传 1.1 客户端上传设置 在 B/S 程序中文件上传已经成为一个常用功能.其目的是客户可以通过浏览器 (Browser) 将文件上传到服务器(Server)上的指定目录. 网络上常 ...

  7. 页面加载和图片加载loading

    准备放假了!也是闲着了 ,就来整理之前学到或用到的一下知识点和使用内容,这次记录的是关于加载的友好性loading!!!这里记录一下两种加载方法 1.页面加载的方法,它需要用到js里面两个方法 doc ...

  8. mybatis精讲(三)--标签及TypeHandler使用

    目录 话引 XML配置标签 概览 properties 子标签property resource 程序注入 settings 别名 TypeHandler 自定义TypeHandler EnumTyp ...

  9. 结合RBAC模型讲解权限管理系统需求及表结构创建

    在本号之前的文章中,已经为大家介绍了很多关于Spring Security的使用方法,也介绍了RBAC的基于角色权限控制模型.但是很多朋友虽然已经理解了RBAC控制模型,但是仍有很多的问题阻碍他们进一 ...

  10. Rust更换Crates源

    Rust编译时遇到如下问题: Downloading futures v0.1.19 warning: spurious network error (2 tries remaining): [28] ...