本文首发于个人博客https://kezunlin.me/post/1739694c/,欢迎阅读!

Install and Configure Caffe on windows 10

Guide

requirements:

  • windows: 10
  • caffe: caffe-windows
  • nvidia driver: gtx 1060 382.05 (gtx 970m)
  • GPU arch(s): sm_61 (sm_52)
  • cuda: 8.0
  • cudnn: 5.0.5
  • opencv: 3.1.0 WITH_CUDA (compiled from source)
  • other libs: libraries_v140_x64_py27_1.1.0.tar.bz2

cuda+cudnn

(1). download and install driver by standalone for GTX 970 or GTX 1060 from here.

(2). download and install cuda_8.0.61_win10.exe, skip install nvidia driver and install toolkit only.

(3). download and install cudnn-8.0-windows10-x64-v5.0-ga.zip.

nvidia driver

driver can be installed by standalone or from cuda_xxx_win10.exe.

we choose to install by standalone

download proper driver for GTX 970 or GTX 1060 eg: 398.36-notebook-win10-64bit-international-whql.exe from https://www.nvidia.com/Download/index.aspx

cuda toolkit

cuda install guides for windows

download cuda_8.0.61_win10.exe from here

The CUDA Toolkit installs the CUDA driver and tools needed to create, build and run a CUDA application as well as libraries, header files, CUDA samples source code, and other resources

cuda_8.0.61_win10.exe includes: Nvidia driver + toolkit.

  • driver install to C:/Program Files/NVIDIA Corporation and C:/ProgramData/NVIDIA Corporation
  • tookit install to C:/Program Files/NVIDIA GPU Computing Toolkit,which contains headers,libs,tools for compiling CUDA applications. C:/ProgramData/NVIDIA GPU Computing Toolkit contains cuda plugins for Visual Studio.

verify

cd C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.2\bin\win64\Release
./deviceQuery.exe

cudnn

extract cudnn-8.0-windows10-x64-v5.0-ga.zip and copy include,liband bin to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0

check cuda

compile

download

place caffe-windows at C:/compile/caffe-windows

extract libraries_v140_x64_py27_1.1.0.tar.bz2 to C:\Users\zunli\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries

config

edit C:\Users\zunli\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\caffe-builder-config.cmake

# BOOST config
set(BOOST_ROOT "C:/Boost/")
set(BOOST_INCLUDEDIR ${BOOST_ROOT}/include/boost-1_64 CACHE PATH "")
set(BOOST_LIBRARYDIR ${BOOST_ROOT}/lib CACHE PATH "")
set(Boost_USE_MULTITHREADED ON CACHE BOOL "")
set(Boost_USE_STATIC_LIBS ON CACHE BOOL "")
set(Boost_USE_STATIC_RUNTIME OFF CACHE BOOL "")

vim caffe-windows/cmake/Dependencies.cmake

set(Boost_USE_STATIC_LIBS ON)
find_package(Boost 1.64 REQUIRED COMPONENTS system thread filesystem)

Tips:

(1) we use C:\Boost\ 1.64 to replace caffe dependencies C:\Users\zunli\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\ 1.61, because we have compile PCL 1.8.1 with Boost 1.64 static.

(2) we use caffe C:\Users\zunli\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\x64\vc14\lib to replace C:/Program Files/opencv. (opencv3.1 <====opencv3.4)

cd caffe
mkdir build && cd build && cmake-gui ..

with options

BLAS                 Open # Atlas, Open, MKL
BUILD_SHARED_LIBS OFF # build static library
CMAKE_CONFIGURATION_TYPES Release
CMAKE_CXX_RELEASE_FLAGS /MD /O2 /Ob2 /DNDEBUG /MP CUDA_ARCH_BIN 3.0 3.5 5.0 5.2 6.0 6.1 # very time-consuming
CUDA_ARCH_NAME Manual
CUDA_ARCH_PTX 3.0

Selecting Windows SDK version 10.0.14393.0 to target Windows 10.0.15063.
Boost version: 1.64.0
Found the following Boost libraries:
system
thread
filesystem
chrono
date_time
atomic
Found gflags (include: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/include, library: gflags_shared)
Found glog (include: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/include, library: glog)
Found PROTOBUF Compiler: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/bin/protoc.exe
Found lmdb (include: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/include, library: lmdb)
Found LevelDB (include: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/include, library: leveldb)
Found Snappy (include: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/include, library: snappy_static;optimized;C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/lib/caffezlib.lib;debug;C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/lib/caffezlibd.lib)
CUDA detected: 8.0
Found cuDNN: ver. 5.0.5 found (include: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/include, library: C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64/cudnn.lib)
Added CUDA NVCC flags for: sm_61
OpenCV found (C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries)
Found OpenBLAS libraries: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/lib/libopenblas.dll.a
Found OpenBLAS include: C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/include
NumPy ver. 1.11.3 found (include: C:/Python27/lib/site-packages/numpy/core/include)
Boost version: 1.64.0
Found the following Boost libraries:
python ******************* Caffe Configuration Summary *******************
General:
Version : 1.0.0
Git : unknown
System : Windows
C++ compiler : C:/Program Files (x86)/Microsoft Visual Studio 14.0/VC/bin/x86_amd64/cl.exe
Release CXX flags : /MD /O2 /Ob2 /DNDEBUG /MP /DWIN32 /D_WINDOWS /W3 /GR /EHsc
Debug CXX flags : /MDd /Zi /Ob0 /Od /RTC1 /DWIN32 /D_WINDOWS /W3 /GR /EHsc
Build type : Release BUILD_SHARED_LIBS : OFF
BUILD_python : ON
BUILD_matlab : OFF
BUILD_docs :
CPU_ONLY : OFF
USE_OPENCV : ON
USE_LEVELDB : ON
USE_LMDB : ON
USE_NCCL : OFF
ALLOW_LMDB_NOLOCK : OFF Dependencies:
BLAS : Yes (Open)
Boost : Yes (ver. 1.64)
glog : Yes
gflags : Yes
protobuf : Yes (ver. 3.1.0)
lmdb : Yes (ver. 0.9.70)
LevelDB : Yes (ver. 1.18)
Snappy : Yes (ver. 1.1.1)
OpenCV : Yes (ver. 3.1.0)
CUDA : Yes (ver. 8.0) NVIDIA CUDA:
Target GPU(s) : Auto
GPU arch(s) : sm_61
cuDNN : Yes (ver. 5.0.5) Python:
Interpreter : C:/Python27/python.exe (ver. 2.7.13)
Libraries : C:/Python27/libs/python27.lib (ver 2.7.13)
NumPy : C:/Python27/lib/site-packages/numpy/core/include (ver 1.11.3) Install:
Install path : C:/car_libs/caffe Configuring done

build and install

tips: Visual Studio 2015 can not generate shared library. So we build static caffe library.

CMake Error at CMakeLists.txt:66 (message):
The Visual Studio generator cannot build a shared library. Use the Ninja
generator instead.

Build with Release x64 with Visual Studio 2015 and 38 modules will be generated and We Install to C:/car_libs/caffe/.

build result.

install to C:/car_libs/caffe.

caffe usage

CMakeLists.txt

# Boost
if(MSVC)
# use static boost on windows
set(Boost_USE_STATIC_LIBS ON) #
else()
# use release boost on linux
set(Boost_USE_STATIC_LIBS OFF)
endif(MSVC) set(Boost_USE_MULTITHREAD ON)
# Find Boost package 1.64 (caffe also use Boost 1.64)
find_package(Boost 1.64 REQUIRED COMPONENTS serialization date_time system filesystem thread timer math_tr1) # opencv
SET(OpenCV_DIR "C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/")
find_package(OpenCV REQUIRED COMPONENTS core highgui imgproc features2d calib3d) # nofree for 2.4 # caffe
set(Caffe_DIR "C:/car_libs/caffe/share/Caffe/")
find_package(Caffe)

when we use caffe lib in our program, errors will occur. And we need to fix CaffeTargets-release.cmake file。

usage error fix

(1) error with shared.lib

LNK1181	unable to open“gflags_shared.lib”

solution:

vim C:/car_libs/caffe/share/Caffe/CaffeTargets-release.cmake

# remove _shared -shared
:1,$s/_shared//g
:1,$s/-shared//g

(2) error with hdf5

hdf5.lib=>libcaffehdf5.lib

hdf5_hl.lib=>libcaffehdf5_hl.lib

 :1,$s/hdf5/libcaffehdf5/g

(3) error with libopenblas

LNK1181	unable to open“libopenblas.dll.a.lib”

solution:

cd C:\Users\zunli\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib and

  • copy libopenblas.a ===> libopenblas.a.lib
  • copy libopenblas.dll.a ===> libopenblas.dll.a.lib

(4) error NtClose

error LNK2019: 无法解析的外部符号 NtClose,该符号在函数 mdb_env_map 中被引用

solution:

copy `C:/Program Files (x86)/Windows Kits/10/Lib/10.0.14393.0/um/x64/ntdll.lib` to `C:\Users\zunli\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\lib`
copy `C:\Windows\SysWOW64\ntdll.dll` to `C:\Users\zunli\.caffe\dependencies\libraries_v140_x64_py27_1.1.0\libraries\bin`

CaffeTargets-release.cmake

cd C:\car_libs\caffe\share\Caffe\CaffeTargets-release.cmake

#----------------------------------------------------------------
# Generated CMake target import file for configuration "Release".
#---------------------------------------------------------------- # Commands may need to know the format version.
set(CMAKE_IMPORT_FILE_VERSION 1) # Import target "caffe" for configuration "Release"
set_property(TARGET caffe APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE)
set_target_properties(caffe PROPERTIES
IMPORTED_LINK_INTERFACE_LANGUAGES_RELEASE "CXX"
IMPORTED_LINK_INTERFACE_LIBRARIES_RELEASE
"caffeproto;C:/Boost/lib/libboost_system-vc140-mt-1_64.lib;C:/Boost/lib/libboost_thread-vc140-mt-1_64.lib;C:/Boost/lib/libboost_filesystem-vc140-mt-1_64.lib;C:/Boost/lib/libboost_chrono-vc140-mt-1_64.lib;C:/Boost/lib/libboost_date_time-vc140-mt-1_64.lib;C:/Boost/lib/libboost_atomic-vc140-mt-1_64.lib;C:/Boost/lib/libboost_python-vc140-mt-1_64.lib;caffehdf5.lib;caffehdf5_cpp.lib;caffehdf5_hl.lib;caffehdf5_hl_cpp.lib;caffezlib.lib;caffezlibstatic.lib;gflags;glog;leveldb.lib;libcaffehdf5.lib;libcaffehdf5_cpp.lib;libcaffehdf5_hl.lib;libcaffehdf5_hl_cpp.lib;libprotobuf.lib;libprotoc.lib;lmdb.lib;snappy.lib;snappy_static.lib;libopenblas.dll.a.lib;ntdll.lib;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64/cudart.lib;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64/curand.lib;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64/cublas.lib;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64/cublas_device.lib;C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v8.0/lib/x64/cudnn.lib;opencv_core;opencv_highgui;opencv_imgproc;opencv_imgcodecs;C:/Python27/libs/python27.lib;"
IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/caffe.lib"
) list(APPEND _IMPORT_CHECK_TARGETS caffe )
list(APPEND _IMPORT_CHECK_FILES_FOR_caffe "${_IMPORT_PREFIX}/lib/caffe.lib" ) # Import target "caffeproto" for configuration "Release"
set_property(TARGET caffeproto APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE)
set_target_properties(caffeproto PROPERTIES
IMPORTED_LINK_INTERFACE_LANGUAGES_RELEASE "CXX"
IMPORTED_LINK_INTERFACE_LIBRARIES_RELEASE "C:/Users/zunli/.caffe/dependencies/libraries_v140_x64_py27_1.1.0/libraries/lib/libprotobuf.lib"
IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/caffeproto.lib"
) list(APPEND _IMPORT_CHECK_TARGETS caffeproto )
list(APPEND _IMPORT_CHECK_FILES_FOR_caffeproto "${_IMPORT_PREFIX}/lib/caffeproto.lib" ) # Commands beyond this point should not need to know the version.
set(CMAKE_IMPORT_FILE_VERSION)

comiple errors with caffe.pb.h

tips: sometimes we not need to do this.

CMakeLists.txt

add_definitions( -DGLOG_NO_ABBREVIATED_SEVERITIES )
add_definitions( -DNOMINMAX ) # for pcl min,max
add_definitions( -DWIN32_LEAN_AND_MEAN )
#add_definitions( -DNO_STRICT ) # no use for caffe.pb.h

vim C:\car_libs\caffe\include\caffe\proto\caffe.pb.h

typedef ParamSpec_DimCheckMode DimCheckMode;
static const DimCheckMode STRICT = ParamSpec_DimCheckMode_STRICT;
static const DimCheckMode PERMISSIVE = ParamSpec_DimCheckMode_PERMISSIVE; typedef V1LayerParameter_DimCheckMode DimCheckMode;
static const DimCheckMode STRICT = V1LayerParameter_DimCheckMode_STRICT;
static const DimCheckMode PERMISSIVE = V1LayerParameter_DimCheckMode_PERMISSIVE;

replace STRICT and PERMISSIVE to _STRICT and _PERMISSIVE.

typedef ParamSpec_DimCheckMode DimCheckMode;
static const DimCheckMode _STRICT = ParamSpec_DimCheckMode_STRICT;
static const DimCheckMode _PERMISSIVE = ParamSpec_DimCheckMode_PERMISSIVE; typedef V1LayerParameter_DimCheckMode DimCheckMode;
static const DimCheckMode _STRICT = V1LayerParameter_DimCheckMode_STRICT;
static const DimCheckMode _PERMISSIVE = V1LayerParameter_DimCheckMode_PERMISSIVE;

caffe.pb.h compile errors

run exe

  • copy C:/car_libs/caffe/bin/*.dll dlls to bin/release folder.
  • copy Opencv dlls to bin/release folder.

Reference

History

  • 20180413 created.

Copyright

windows 10安装和配置caffe教程 | Install and Configure Caffe on windows 10的更多相关文章

  1. ubuntu 16.04源码编译和配置caffe详细教程 | Install and Configure Caffe on ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/b90033a9/,欢迎阅读! Install and Configure Caffe on ubuntu 16.04 Series ...

  2. [Part 1] Ubuntu 16.04安装和配置QT5 | Part-1: Install and Configure Qt5 on Ubuntu 16.04

    本文首发于个人博客https://kezunlin.me/post/91842b71/,欢迎阅读! Part-1: Install and Configure Qt5 on Ubuntu 16.04 ...

  3. MinGW - 安装和配置 / MinGW - Howto Install And Configure

    MinGW在线安装程序下载地址:http://sourceforge.net/projects/mingw/files/Automated%20MinGW%20Installer/mingw-get- ...

  4. Tableau Server注册安装及配置详细教程

    Tableau Server注册安装及配置详细教程 本文讲解的是 Tableau Server 10.0 版本的安装及配置 这里分享的 TableauServer 安装版本为64位的10.0版本Ser ...

  5. opencv学习(1.2) - Windows 10 安装OpenCV &配置VS 2015

    windows 10 安装OpenCV&配置VS 2015 环境 系统:Windows 10 OpenCV版本:3.4.1 开发IDE:VS2015 社区版 下载安装 下载OpenCV 3.4 ...

  6. MySQL5.7免安装版配置图文教程

    MySQL5.7免安装版配置图文教程 更新时间:2017年09月06日 10:22:11   作者:吾刃之所向    我要评论 Mysql是一个比较流行且很好用的一款数据库软件,如下记录了我学习总结的 ...

  7. CentOS 6.5系统使用yum方式安装LAMP环境和phpMyAdmin,mysql8.0.1/mysql5.7.22+centos7,windows mysql安装、配置

    介绍如何在CentOs6.2下面使用YUM配置安装LAMP环境,一些兄弟也很喜欢使用编译的安装方法,个人觉得如果不是对服务器做定制,用yum安装稳定简单,何必去download&make&am ...

  8. win7下IIS的安装和配置 图文教程

    转自   http://www.jb51.net/article/29787.htm 最近工作需要IIS,自己的电脑又是Windows7系统,找了下安装的方法,已经安装成功.在博客里记录一下,给需要的 ...

  9. PHP学习之-Mongodb在Windows下安装及配置

    Mongodb在Windows下安装及配置 1.下载 下载地址:http://www.mongodb.org/ 建议下载zip版本. 2.安装 下载windows版本安装就和普通的软件一样,直接下一步 ...

随机推荐

  1. Django框架简介与使用注意事项

    一.Django框架简介 MVC框架和MTV框架 MVC框架 MVC,全名是Model View Controller,是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model). ...

  2. nuxt.js部署vue应用到服务端过程

    由于seo的需要,最近将项目移植道nuxt.js下采用ssr渲染 移植完成后,一路顺畅,但是到了要部署到服务器端上时候,还是个头疼的问题,但最终还是顺利完成.现在记录一下部署中的过程. 注:部署时候过 ...

  3. Hystrix dashboard - Unable to connect to Command Metric Stream.

    在使用boot 2.0.*以上版本 + cloud Finchley.RELEASE 查看仪表盘的时候会报错 Unable to connect to Command Metric Stream &l ...

  4. 两行代码玩转SUMO!

    两行代码玩转SUMO! 这篇博客很简单,但是内容很丰富 如何生成如下所示的研究型路网结构? 只需要打开ubuntu终端输入如下代码即可,grid.number代表路口数量,grid.length代表路 ...

  5. 防抖与节流 & 若每个请求必须发送,如何平滑地获取最后一个接口返回的数据

    博客地址:https://ainyi.com/79 日常浏览网页中,在进行窗口的 resize.scroll 或者重复点击某按钮发送请求,此时事件处理函数或者接口调用的频率若无限制,则会加重浏览器的负 ...

  6. fenby C语言 P11

    else {} if {} #include int main() { int a=15; if(a%2==0) { printf("我是偶数!"); }else { printf ...

  7. xtrabackup备份原理及流式备份应用

    目录 xtrabackup备份原理及流式备份应用 0. 参考文献 1. xtrabackup 安装 2. xtrabackup 备份和恢复原理 2.1 备份阶段(backup) 2.2 准备阶段(pr ...

  8. CMMS系统中的物联监测

    有条件的设备物联后,可时实查看设备运行状态,如发现异常,可提前干预.

  9. ArcSDE 10 for SQL Server安装教程(含下载链接)

    亲测:ArcSDE 10.1适用于ArcGIS10.2的版本. 该版本支持SQL Server.Oracle.PostgreSQL等数据库连接 下载链接(含安装包和授权文件): 链接:https:// ...

  10. DZY Loves Math II:多重背包dp+组合数

    Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...