[USACO10NOV]购买饲料Buying Feed 单调队列优化DP
题目描述
约翰开车来到镇上,他要带 KKK 吨饲料回家。运送饲料是需要花钱的,如果他的车上有 XXX 吨饲料,每公里就要花费 X2X^2X2 元,开车D公里就需要 D×X2D\times X^2D×X2 元。约翰可以从 NNN 家商店购买饲料,所有商店都在一个坐标轴上,第 iii 家店的位置是 XiX_iXi ,饲料的售价为每吨 CiC_iCi 元,库存为 FiF_iFi 。
约翰从坐标 X=0X=0X=0 开始沿坐标轴正方向前进,他家在坐标 X=EX=EX=E 上。为了带 KKK 吨饲料回家,约翰最少的花费是多少呢?假设所有商店的库存之和不会少于 KKK 。
举个例子,假设有三家商店,情况如下所示:
坐标 | X=1X=1X=1 | X=3X=3X=3 | X=4X=4X=4 | E=5E=5E=5 |
---|---|---|---|---|
库存 | 111 | 111 | 111 | |
售价 | 111 | 222 | 222 |
如果 K=2K=2K=2 ,约翰的最优选择是在离家较近的两家商店购买饲料,则花在路上的钱是 1+4=51+4=51+4=5 ,花在商店的钱是 2+2=42+2=42+2=4 ,共需要 999 元。
输入输出格式
输入格式:
第 111 行:三个整数 K,E,NK,E,NK,E,N 第 2..N+12..N+12..N+1 行:第 i+1i+1i+1 行的三个整数代表, Xi,Fi,CiX_i,F_i,C_iXi,Fi,Ci .
输出格式:
一个整数,代表最小花费
输入输出样例
2 5 3
3 1 2
4 1 2
1 1 1
9 提交地址:Luogu4544; 我们发现, 最优的情况肯定是从家里往前走,走到要到达想要到的最远的商店, 往回走的时候再买东西;
这就提示我们, 我们要先对坐标排序, 然后设dp[i][j],表示到了第i个商店, 在第i个商店之前买了j个东西的最小花费;
dp[i][j]=min(dp[i-1][p]+dis[i]*j*j+w[i-1]*(j-p));
什么意思呢?
我们枚举一个p, 表示第i-1个商店时有p个货物,那么显然在i-1个商店买了(j-p)个货物,算上在第i-1个商店的花费,加上从i-1到i的路费,就是dp[i][j];
复杂度nk^2, 妥妥的炸;
考虑优化;
发现转移式子里有min,自觉地想到了单调队列;
我们对式子进行一波变形。
dp[i-1][p] - w[i-1]*p + dis[i]*j*j + w[i-1]*j;
我们发现, 在i和j变化的时候,只有p是在变的,所以我们单调队列里放p;
怎么处理呢?
如果(j-q.front() > F[i-1])就pop掉队首, 因为我们要在i-1商店买的货物大于了第i-1个店的库存;
如果o=q.back(), dp[i-1][o]-w[i-1]*o >= dp[i-1][j]-w[i-1]*j, 就pop掉队尾;显然;
(写反了这个↑还能A, 数据太水了)
要注意的是,要把自己的家也当成一个点,这样dp[n][k]才是最后的答案!
然后注意开long long;
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define int long long inline int read()
{
int res=;bool fl=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')fl=;ch=getchar();
}while(isdigit(ch)){res=(res<<)+(res<<)+(ch-'');ch=getchar();
}return fl?-res:res;
} int n, k, e; struct date
{
int pos;
int F;
int w;
friend bool operator <(date a, date b)
{
return a.pos < b.pos;
}
}fam[]; int dp[][]; signed main()
{
k = read(), e = read(), n = read(); for (register int i = ; i <= n ; i ++)
{
fam[i].pos = read(), fam[i].F = read(), fam[i].w = read();
} fam[++n] = (date){e, , }; sort(fam + , fam + + n); memset(dp, 0x3f, sizeof dp); dp[][] = ; for (register int i = ; i <= n ; i ++)
{
deque <int> q;
for (register int j = ; j <= k ; j ++)
{
while (!q.empty() and j - q.front() > fam[i-].F) q.pop_front(); //要买的大于上一个店的存储
if (dp[i-][j] != 0x3f3f3f3f)
{
while (!q.empty() and dp[i-][q.back()] - fam[i-].w * q.back() >= dp[i-][j] - fam[i-].w * j) q.pop_back();
q.push_back(j);
}
int o = q.front();
if (!q.empty()) dp[i][j] = dp[i-][o] - fam[i-].w * o + (fam[i].pos - fam[i-].pos) * j * j + fam[i-].w * j;
}
} cout << dp[n][k] << endl;
return ; }
[USACO10NOV]购买饲料Buying Feed 单调队列优化DP的更多相关文章
- P4544 [USACO10NOV]购买饲料Buying Feed
额,直接思路就dp吧.(我还想了想最短路之类的233但事实证明不行2333.....) 直入主题: 化简题意:在x轴上有n个点,坐标为xi.从原点出发,目标点为e,在途中需要收集K重量的物品,在每个点 ...
- 【luoguP4544】[USACO10NOV]购买饲料Buying Feed
题目链接 首先把商店按坐标排序 \(dp_{i,j}\)表示前i个商店买了j吨饲料并运到终点的花费,二进制拆分优化转移 #include<algorithm> #include<io ...
- 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP
上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- 单调队列优化DP——习题收集
前言 感觉可以用单调队列优化dp的模型还是挺活的,开个随笔记录一些遇到的比较有代表性的模型,断续更新.主要做一个收集整理总结工作. 记录 0x01 POJ - 1821 Fence,比较适合入门的题, ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
随机推荐
- LOVE POWER html与javaScript
1.纯HTML与javaScript编写的表白动态图 1.对于世界而言,你是一个人:但是对于某个人,你是他的整个世界. 2.不要为那些不愿在你身上花费时间的人而浪费你的时间. 3.我爱你,不是因为你是 ...
- [Advanced Python] 16 - Google style guide for programming
Ref: Python 风格指南 - 内容目录 这里主要记录一下值得注意的地方. Python语言规范 Lint:vsCode自带 导入:完整路径 异常 Ref: [Python] 07 - Stat ...
- C#使用Oxyplot绘制监控界面
C#中可选的绘图工具有很多,除了Oxyplot还有DynamicDataDisplay(已经改名为InteractiveDataDisplay)等等.不过由于笔者这里存在一些环境上的特殊要求,.Net ...
- Python3.7.4入门-2流程控制工具
2 流程控制工具 记得在语句后加冒号 2.1 while # Fibonacci series: # the sum of two elements defines the next a, b = 0 ...
- Matplotlib散点图、条形图、直方图-02
对比常用统计图 折线图: 特点:能够显示数据的变化趋势,反映事物的变化情况.(变化) 直方图: 特点:绘制连续性的数据,展示一组或者多组数据的分布情况(统计) 条形图: 特点:绘制离散的数据,能够一眼 ...
- Spring Boot 的单元测试和集成测试
学习如何使用本教程中提供的工具,并在 Spring Boot 环境中编写单元测试和集成测试. 1. 概览 本文中,我们将了解如何编写单元测试并将其集成在 Spring Boot 环境中.你可在网上找到 ...
- wait()与notify()
一,前言 简单画了一下线程的流程图,只是一个大概.如图所示,线程有多种状态,那么不同状态之间是如何切换的,下面主要总结关于wait()和notify()的使用. 二,wait() wait ...
- 解决行内块元素(inline-block)之间的空格或空白问题
一.问题产生 由于html代码格式化后,标签会缩进或者换行.由于浏览器默认处理导致元素在页面显示中出现单个空格问题,尤其在行内或者行内块元素布局时影响比较明显 例如: 代码 页面显示 二.解决方案 这 ...
- 为何stop()和suspend()方法不推荐使用(转)
stop()方法作为一种粗暴的线程终止行为,在线程终止之前没有对其做任何的清除操作,因此具有固有的不安全性. 用Thread.stop()方法来终止线程将会释放该线程对象已经锁定的所有监视器.如果以前 ...
- overflow滚动条如何隐藏
隐藏滚动条有很多方法,比较简单和直观的方法可以使用::-webkit-scrollbar来完成 例如: .box::-webkit-scrollbar{ display:none } 这样的话就把bo ...