Merchant

题目描述

有\(n\)个物品,第\(i\)个物品有两个属性\(k_i,b_i\),表示它在时刻\(x\)的价值为\(k_i\times x+b_i\).

当前处于时刻\(0\),你可以选择不超过\(m\)个物品,使得存在某个整数时刻\(t,t≥ 0\),你选择的所有物品的总价值大于等于\(S\).

给出\(S\),求\(t\)的最小值。

输入输出格式

输入格式

第一行三个整数\(n,m,S\).

接下来\(n\)行,第\(i\)行两个整数\(k_i,b_i\).

输出格式

一行一个整数表示答案.

数据范围

对于所有数据,有\(1\le m\le n\le 10^6,-10^9 \le b_i \le 10^9,-10^6 \le k_i \le 10^6,0 \le S \le 10^{18}\).

数据保证有解,且答案不超过\(10^9\)。

  • \(\text{Subtask}1(22\%)\), \(n ≤ 20\).
  • \(\text{Subtask}2(36\%)\), \(n ≤ 10^5\),\(0 ≤ k_i ≤ 10^4\).
  • \(\text{Subtask}3(8\%)\), \(k_i ≤ 0\).
  • \(\text{Subtask}4(12\%)\), \(n ≤ 10^5\).
  • \(\text{Subtask}5(22\%)\), 没有特殊的约束。

一开始大家都想二分\(t\)

但很快发现这样是不对哒

可事实上又是可以哒

\(t\)的造成的最大的可取集合在值域上要么单调增,要么先单减后单增。

对于后者,我们先判\(0\),然后二分就行了

发现这样如果sort是\(nlognlog1e9\)哒

但找第k大可以\(O(n)\)

实现是快排只进入一边

可以用\(nth\_element\)


Code:

#include <cstdio>
#include <algorithm>
#define ll long long
const int N=1e6+10;
int n,m;
ll k[N],b[N],d[N],S;
ll read()
{
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-f;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
bool check(ll t)
{
for(int i=1;i<=n;i++)
d[i]=k[i]*t+b[i];
std::nth_element(d+1,d+n-m,d+1+n);
ll sum=0;
for(int i=n;i>n-m;i--)
{
sum+=d[i]>0?d[i]:0;
if(sum>=S) return true;
}
return false;
}
int main()
{
scanf("%d%d",&n,&m);
S=read();
for(int i=1;i<=n;i++)
k[i]=read(),b[i]=read();
ll l=0,r=1e9;
if(check(l)) return puts("0"),0;
while(l<r)
{
ll mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
printf("%lld\n",l);
return 0;
}

2018.10.6

雅礼集训 Day6 T1 Merchant 解题报告的更多相关文章

  1. 雅礼集训 Day7 T1 Equation 解题报告

    Reverse 题目背景 小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\).现在小\(\text{G}\)可以进行若干次以 ...

  2. 雅礼集训 Day6 T2 Equation 解题报告

    Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...

  3. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

  4. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  5. 雅礼集训 Day3 T3 w 解题报告

    w 题目背景 \(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14 ...

  6. 雅礼集训 Day1 T3 画作 解题报告

    画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...

  7. 雅礼集训 Day5 T3 题 解题报告

    题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...

  8. 雅礼集训 Day3 T2 u 解题报告

    u 题目背景 \(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了. ...

  9. 雅礼集训 Day3 T2 v 解题报告

    v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...

随机推荐

  1. Spring Cloud 入门 Eureka-Client服务提供

    前面文章介绍了如果创建“服务注册中心”,现在创建“服务提供者”,并向服务注册中心注册自己,在服务提供方中尝试着提供一个接口来获取当前所有的服务信息. 先,创建一个基本的Spring Boot应用.命名 ...

  2. Navicat Premium Mac 12 破解

    破解地址:https://blog.csdn.net/xhd731568849/article/details/79751188 亲测有效

  3. Linq to SQL八大子句

    查询数据库中的数据 from- in子句 指定查询操作的数据源和范围变量 select子句 指定查询结果的类型和表现形式 where子句 筛选元素的逻辑条件,一般由逻辑运算符组成 group- by子 ...

  4. linuxC编程介绍

    第一步:写完程序 /first.c/ #include <stdio.h> int main() { printf("hello,welcome to the LinuxC!\n ...

  5. Python系列6之面向对象

    目录 生成器和迭代器 字符串格式化 内置函数vars 反射 面向对象编程 一. 生成器和迭代器  1. 生成器 生成器具有一种生成的能力,它仅仅代表着一种生成的能力,当我们需要使用的时候,才会通过迭代 ...

  6. C语言进阶—— 逻辑运算符分析15

    印象中的逻辑运算符: ---学生:老师,在我的印象中,逻辑运算符用在条件判断的时候,真挺简单的,还有必要深究吗? ---老师:逻辑运算符确实在条件判断的时候用的比较多,但是并不能说简单... 请思考下 ...

  7. 存在チェックのみする場合はcount(*)でOK

    SELECT SINGLE COUNT(*) FROM T001 WHERE BUKRS = P_BUKRS. IF SY-SUBRC <> 0. ENDIF.

  8. PHP代码审计6-实战漏洞挖掘-xdcms用户注册页面漏洞

    xdcms 源码:xdcms v2.0.8 1.配置 [一直下一步(仅为测试)] #数据库账号root,密码为空:管理员账号/密码:xdcms/xdcms #登录后台 2.查看后台登录页面的配置项[x ...

  9. 分别用反射、编程接口的方式创建DataFrame

    1.通过反射的方式 使用反射来推断包含特定数据类型的RDD,这种方式代码比较少,简洁,只要你会知道元数据信息时什么样,就可以使用了 代码如下: import org.apache.spark.sql. ...

  10. centos 服务器内存管理 服务于端口状态

    du su /目录/ 查看改目录大小 ls -lht /  查看文件详情,显示文件大小(直观) df -h 查看系统内存占用情况 centos 版本 lsb_release -a cat /etc/i ...