Merchant

题目描述

有\(n\)个物品,第\(i\)个物品有两个属性\(k_i,b_i\),表示它在时刻\(x\)的价值为\(k_i\times x+b_i\).

当前处于时刻\(0\),你可以选择不超过\(m\)个物品,使得存在某个整数时刻\(t,t≥ 0\),你选择的所有物品的总价值大于等于\(S\).

给出\(S\),求\(t\)的最小值。

输入输出格式

输入格式

第一行三个整数\(n,m,S\).

接下来\(n\)行,第\(i\)行两个整数\(k_i,b_i\).

输出格式

一行一个整数表示答案.

数据范围

对于所有数据,有\(1\le m\le n\le 10^6,-10^9 \le b_i \le 10^9,-10^6 \le k_i \le 10^6,0 \le S \le 10^{18}\).

数据保证有解,且答案不超过\(10^9\)。

  • \(\text{Subtask}1(22\%)\), \(n ≤ 20\).
  • \(\text{Subtask}2(36\%)\), \(n ≤ 10^5\),\(0 ≤ k_i ≤ 10^4\).
  • \(\text{Subtask}3(8\%)\), \(k_i ≤ 0\).
  • \(\text{Subtask}4(12\%)\), \(n ≤ 10^5\).
  • \(\text{Subtask}5(22\%)\), 没有特殊的约束。

一开始大家都想二分\(t\)

但很快发现这样是不对哒

可事实上又是可以哒

\(t\)的造成的最大的可取集合在值域上要么单调增,要么先单减后单增。

对于后者,我们先判\(0\),然后二分就行了

发现这样如果sort是\(nlognlog1e9\)哒

但找第k大可以\(O(n)\)

实现是快排只进入一边

可以用\(nth\_element\)


Code:

#include <cstdio>
#include <algorithm>
#define ll long long
const int N=1e6+10;
int n,m;
ll k[N],b[N],d[N],S;
ll read()
{
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {if(c=='-') f=-f;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
bool check(ll t)
{
for(int i=1;i<=n;i++)
d[i]=k[i]*t+b[i];
std::nth_element(d+1,d+n-m,d+1+n);
ll sum=0;
for(int i=n;i>n-m;i--)
{
sum+=d[i]>0?d[i]:0;
if(sum>=S) return true;
}
return false;
}
int main()
{
scanf("%d%d",&n,&m);
S=read();
for(int i=1;i<=n;i++)
k[i]=read(),b[i]=read();
ll l=0,r=1e9;
if(check(l)) return puts("0"),0;
while(l<r)
{
ll mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
printf("%lld\n",l);
return 0;
}

2018.10.6

雅礼集训 Day6 T1 Merchant 解题报告的更多相关文章

  1. 雅礼集训 Day7 T1 Equation 解题报告

    Reverse 题目背景 小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\).现在小\(\text{G}\)可以进行若干次以 ...

  2. 雅礼集训 Day6 T2 Equation 解题报告

    Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...

  3. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

  4. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  5. 雅礼集训 Day3 T3 w 解题报告

    w 题目背景 \(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14 ...

  6. 雅礼集训 Day1 T3 画作 解题报告

    画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...

  7. 雅礼集训 Day5 T3 题 解题报告

    题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...

  8. 雅礼集训 Day3 T2 u 解题报告

    u 题目背景 \(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了. ...

  9. 雅礼集训 Day3 T2 v 解题报告

    v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...

随机推荐

  1. Problem 1004-2017 ACM/ICPC Asia Regional Shenyang Online

    题目来源:array array array Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...

  2. vc导出调用dll的两种方式

    一.stdcall 1. #define  DLLEXPORT _declspec(dllexport) _stdcall, int DLLEXPORT func(const char *peer,u ...

  3. 【学时总结】◆学时·V◆ 逆元法

    ◆学时·V◆ 逆元法 □算法概述□ 逆元运算是模运算中的一个技巧,一般用于解决模运算的除法问题.模运算对于加.减.乘是有封闭性的,即 (a±b)%m=a%m±b%m,以及 (a×b)%m=a%m×b% ...

  4. tcp回显客户端发送的数据

    客户端: import socket tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tcp_socket.connect ...

  5. java后台poi根据模板导出excel

    public class ExcelUtils { private static final String INSPECTIONRECORD_SURFACE_TEMPLET_PATH = " ...

  6. linux文件属性更改命令

    chown 当我们要改变一个文件的属主,我们所使用的用户必须是该文件的属主而且同时是目标属组成员,或超级用户.只有超级用户的才能改变文件的属主. chown语法: chown  [选项]...[所有者 ...

  7. php jsonp实例 mip无限滚动组件接口注意事项

    在改造mip的过程中,很多同学遇到这样一个问题.mip无限滚动问题 异步请求数据接口(仅支持 JSONP 请求) 异步请求接口需要规范 callback 为 'callback' 那么什么是JSONP ...

  8. A Country on Wheels【车轮上的国家】

    A Country on Wheels As cultural symbols go, the American  car is quite young. 作为文化象征的美国汽车还相当年轻. The ...

  9. 解决boostrap-table有水平和垂直滚动条时,滚动条滑到最右边表格标题和内容单元格无法对齐的问题

    问题:boostrap-table有水平和垂直滚动条时,滚动条不高的时候(滚动高度比较大的时候没有问题),滚动条滑到最右边表格标题和内容单元格无法对齐的问题 问题原因:bootstrap-table源 ...

  10. 调试bug 技巧

    两天,一个小bug 我调试了两天,最终调试成功了.还是在别人的帮助下. 问题是刷新相关的.当用户登录了,其他的页面都要刷新.也就是加上一些参数. 但是有一个fragment一直加不上,其他挨着的两个都 ...