题面

传送门

思路

真是一道神奇的题目呢

题目本身可以转化为二分图匹配问题,要求右半部分选择的点的最大编号最小的一组完美匹配

注意到这里左边半部分有一个性质:每个点恰好连出两条边到右半部分

那么我们可以利用这个性质

考虑一个左边的点和它右边联通的两个点,发现这两个点只能选择一个和这个左边的点匹配

那么我们考虑把这个点点匹配的模型转化成点边匹配

我们在同一个左边点连的两个右边点之间连边,那么问题就变成了一个点和一条相邻的边匹配,求完美匹配的问题了

而这个问题,我们显然可以用并查集来很好的解决

考虑一个联通块,如果联通块中边数大于点数,那么可以直接输出-1,因为此时边代表的是原题中需要满足的那个东西(考试),而边比点多就一定无解了

如果边数等于点数,那么显然这个联通块中做出最大值贡献的点应该是编号最大的那个。这种情况下我们会得到一棵基环树,每个边恰好有一个点和它匹配

如果边数小于点数,那么这个联通块肯定是一个树,那么此时对答案的贡献就是联通块中的次大值了,因为可以以最大值为根,不选根,剩下的每个点匹配连接它和它父亲的那条边

用并查集维护联通块内部的点数、边数、最大值和次大值,最后扫一遍,取所有联通块的最大贡献的最大值即可

Code

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cassert>
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int f[2000010],maxn[2000010],sec[2000010],cnte[2000010],cntn[2000010];
inline int find(int x){return ((f[x]==x)?x:f[x]=find(f[x]));}
inline void join(int x,int y){
x=find(x);y=find(y);
if(x==y){
cnte[x]++;return;//注意这里也需要加一条边
}
f[x]=y;cnte[y]+=cnte[x]+1;cntn[y]+=cntn[x];
int tmp[4];
tmp[0]=maxn[x];tmp[1]=sec[x];tmp[2]=maxn[y];tmp[3]=sec[y];
sort(tmp,tmp+4);
maxn[y]=tmp[3];sec[y]=tmp[2];
}
struct node{
int val,num,pos;
}a[2000010];
int n,cnt;
inline bool cmp1(node l,node r){
return l.val<r.val;
}
inline bool cmp2(node l,node r){
return l.num<r.num;
}
int main(){
n=read();int i,j;
for(i=1;i<=n;i++) a[i].val=read(),a[i+n].val=read(),a[i].num=i,a[i+n].num=i+n;
sort(a+1,a+(n<<1)+1,cmp1);
for(i=1;i<=(n<<1);i++){
j=i;
while(a[i+1].val==a[i].val&&i<(n<<1)) i++;
cnt++;f[cnt]=cnt;cnte[cnt]=0;cntn[cnt]=1;maxn[cnt]=a[i].val;sec[cnt]=0;
while(j<=i) a[j].pos=cnt,j++;
}
sort(a+1,a+(n<<1)+1,cmp2);
for(i=1;i<=n;i++){
join(a[i].pos,a[i+n].pos);
}
int ans=0;
for(i=1;i<=cnt;i++){
if(f[i]==i){
if(cnte[i]>cntn[i]){
puts("-1");return 0;
}
if(cnte[i]==cntn[i]) ans=max(ans,maxn[i]);
if(cnte[i]<cntn[i]) ans=max(ans,sec[i]);
}
}
cout<<ans<<'\n';
}

[Codeforces 1027 F] Session in BSU [并查集维护二分图匹配问题]的更多相关文章

  1. CF 1027 F. Session in BSU

    F. Session in BSU https://codeforces.com/contest/1027/problem/F 题意: n场考试,每场可以安排在第ai天或者第bi天,问n场考完最少需要 ...

  2. cf1027F. Session in BSU(并查集 匈牙利)

    题意 题目链接 $n$个人,每个人可以在第$a_i$天或第$b_i$,一天最多考一场试,问在最优的情况下,最晚什么时候结束 Sol 自己只能想到暴力匈牙利二分图匹配,然而还是被构造数据卡了.. 标算很 ...

  3. CF1027F Session in BSU (并查集+树上构造)

    题目大意:你可以在第$ai$天或者第$bi$天进行第$i$场考试,每天最多进行一场考试,求把所有考试都考完的最早结束时间 由于天数可能很大,需要离散 把问题抽象成一棵树,每个点最多被"分配& ...

  4. Codeforces 1027F Session in BSU - 并查集

    题目传送门 传送门I 传送门II 传送门III 题目大意 有$n​$门科目有考试,第$i​$门科目有两场考试,时间分别在$a_i, b_i\ \ (a_i < b_i)​$,要求每门科目至少参加 ...

  5. codeforces 659F F. Polycarp and Hay(并查集+bfs)

    题目链接: F. Polycarp and Hay time limit per test 4 seconds memory limit per test 512 megabytes input st ...

  6. 线段树、最短路径、最小生成树、并查集、二分图匹配、最近公共祖先--C++模板

    线段树(区间修改,区间和): #include <cstdio> #include <iostream> #include <cstring> using name ...

  7. HD2444The Accomodation of Students(并查集判断二分图+匹配)

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  8. codeforces #541 F Asya And Kittens(并查集+输出路径)

    F. Asya And Kittens Asya loves animals very much. Recently, she purchased nn kittens, enumerated the ...

  9. F. Asya And Kittens 并查集维护链表

    reference :https://www.cnblogs.com/ZERO-/p/10426473.html

随机推荐

  1. CentOS使用yum安装drbd

    CentOS 6.x系统要升级到最新的内核才支持 CentOS 6.x rpm -ivh http://www.elrepo.org/elrepo-release-6-6.el6.elrepo.noa ...

  2. VMware运行时“内部错误”的解决方法

    解决方法:打开虚拟机实体目录,如下:发现有两个虚拟机配置文件,一个文件大小为4KB,另一个为空.现在虚拟机默认使用为空的配置文件了. 将大小为空的虚拟机配置文件删除掉,然后将另一个配置文件重名命. 接 ...

  3. centos7 多网卡修改默认路由

    最近在virtualbox里搭了一个centos7的虚拟机,但是网络这一块总是有问题. 单网卡下的问题: 1.当我配置连接方式为NAT网络地址转换的时候,虚拟机可以访问外网.但是在网络地址转换的情况下 ...

  4. opendaylight安装

    OpenDaylight安装 环境 jdk-1.8 maven 环境配置安装 Java环境 查看Java环境 java  -version 安装jdk-1.8 yum install java-1.8 ...

  5. python-含参函数

    #!/usr/local/bin/python3 # -*- coding:utf-8 -*- ''' #----------函数位置参数和关键字参数---------- def test(x,y): ...

  6. [USACO5.1]夜空繁星Starry Night

    题目背景 高高的星空,簇簇闪耀的群星形态万千.一个星座(cluster)是一群连通的星组成的非空连通星系,这里的连通是指水平,垂直或者对角相邻的两个星星.一个星座不能是另一个更大星座的一部分, 星座可 ...

  7. [USACO1.5] 回文质数

    P1217  Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找出范围[a,b](5 < ...

  8. 菜鸟教程perl总结

    数据类型有:  标量$, 数组@,哈希% 数组声明 :  @hits = (25, 30, 40);  或者  @sites = qw/google taobao runoob/; 数组操作 pop, ...

  9. 使用Yeoman自动构建Ember项目

    Yeoman是什么? Yeoman按照官方说法,它不只是一个工具,还是一个工作流.它其实包括了三个部分yo.grunt.bower,分别用于项目的启动.文件操作.包管理. Yo: Yo是一个项目初始化 ...

  10. Android 判断屏幕方向一个大坑

    正常的判断屏幕方向的代码: /** 获取屏幕是否是竖屏 * @return */ @SuppressLint("SwitchIntDef") public boolean isSc ...