[bzoj 2216] [Poi2011] Lightning Conductor
[bzoj 2216] [Poi2011] Lightning Conductor
Description
已知一个长度为n的序列a1,a2,…,an。
对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p – sqrt(abs(i-j))
Input
第一行n,(1<=n<=500000)
下面每行一个整数,其中第i行是ai。(0<=ai<=1000000000)
Output
n行,第i行表示对于i,得到的p
Sample Input
6
5
3
2
4
2
4
Sample Output
2
3
5
3
5
4
将不等式变一下形就可以得到这个:
\]
由于对任意的A都成立,那么就有:
\]
这个是满足决策单调性的,假设存在 $ j>k $ 且j比k更优,考虑到函数 $ f\left( x \right) =\sqrt { x } $ 为一个上凸函数,那么由于 $ i-k $ 于 $ i-j $ 的增长速度相同,而 \(i-k\) 更大,所以$ f\left( k \right) =\sqrt { i-k } $也就增长得越快(就是下跌得更猛).所以可以用决策单调性优化.(即k永世不得翻身).那么就可以二分决策的端点进行dp了.绝对值左右两遍dp一下就可以去掉了.
#include <cstdio>
#include <cmath>
#include <algorithm>
using std :: max;
using std :: sqrt;
using std :: ceil;
static const int maxm = 1e6 + 10;
int f[maxm],g[maxm],A[maxm];
int n;
void solve1(int l,int r,int L,int R){
if(l > r || L > R) return;
int pos = 0,mid = (l + r) >> 1; double mx = 0;
for(int i = L;i <= R && i <= mid;i++)
if((double) A[i] + sqrt(mid - i) >= mx)
pos = i,mx = (double) A[i] + sqrt(mid - i);
f[mid] = A[pos] + ceil(sqrt(mid - pos));
solve1(l,mid - 1,L,pos);
solve1(mid + 1,r,pos,R);
}
void solve2(int l,int r,int L,int R){
if(l > r || L > R) return;
int pos = 0,mid = (l + r) >> 1; double mx = 0;
for(int i = R;i >= L && i >= mid;i--)
if((double) A[i] + sqrt(i - mid) >= mx)
pos = i,mx = (double) A[i] + sqrt(i - mid);
g[mid] = A[pos] + ceil(sqrt(pos - mid));
solve2(l,mid - 1,L,pos);
solve2(mid + 1,r,pos,R);
}
int main(){
scanf("%d",&n);
for(int i = 1;i <= n;i++)scanf("%d",&A[i]);
solve1(1,n,1,n);solve2(1,n,1,n);
for(int i = 1;i <= n;i++)printf("%d\n",max(f[i],g[i])-A[i]);
return 0;
}
[bzoj 2216] [Poi2011] Lightning Conductor的更多相关文章
- bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
- 【BZOJ】2216: [Poi2011]Lightning Conductor
题意 给一个长度为\(n\)的序列\(a_i\),对于每个\(1 \le i \le n\),找到最小的非负整数\(p\)满足 对于任意的\(j\), \(a_j \le a_i + p - \sqr ...
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- P3515 [POI2011]Lightning Conductor(决策单调性分治)
P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...
- BZOJ2216 : [Poi2011]Lightning Conductor
$f[i]=\max(a[j]+\lceil\sqrt{|i-j|}\rceil)$, 拆开绝对值,考虑j<i,则决策具有单调性,j>i同理, 所以可以用分治$O(n\log n)$解决. ...
- 洛谷P3515 [POI2011]Lightning Conductor(动态规划,决策单调性,单调队列)
洛谷题目传送门 疯狂%%%几个月前就秒了此题的Tyher巨佬 借着这题总结一下决策单调性优化DP吧.蒟蒻觉得用数形结合的思想能够轻松地理解它. 首先,题目要我们求所有的\(p_i\),那么把式子变一下 ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
随机推荐
- yii2邮箱发送
yii2 邮件发送 163邮箱 1.在配置文件main-local.php components=>[]里面配置 'mailer' => [ 'class' => 'yii\swi ...
- php扩展开发-MINFO
我们在用PHPinfo函数或命令行的php -i命令查看php环境相关的信息,当我们开发完成一个自己的扩展,除非这个扩展就是你自己所使用,否则你就需要对扩展进行相关的介绍,或者显示扩展用到的ini配置 ...
- Python学习笔记:单例模式
单例模式:一个类无论实例化多少次,返回的都是同一个实例,例如:a1=A(), a2=A(), a3=A(),a1.a2和a3其实都是同一个对象,即print(a1 is a2)和print(a2 is ...
- 准备篇(二)C语言
因为C语言部分打算单独维护,所以 目录: 1. C语言基础篇(零)gcc编译和预处理 2. C语言基础篇(一)关键字 3. C语言基础篇(二)运算符 4. C语言指针篇(一)指针与指针变量 5. C语 ...
- Reward HDU - 2647
传送门 Dandelion's uncle is a boss of a factory. As the spring festival is coming , he wants to dis ...
- Diycode开源项目 如何解决InputMethodManager造成的内存泄漏问题
1.内存泄漏的状况及原因 1.1.利用LeakCanary查看内存泄漏的状况 1.2.内存泄漏怎么产生的呢? InputMethodManager.mServicedView持有一个最后聚焦View的 ...
- linux centos7--linux和window共享文件(samba)
这里以VMWARE与主控真机来做实现实现 由于SMB在centos中自带,所以,无需像网上说的样子,要这删除,那卸载,直接搜索是否存在SAMBA的安装文件 一 查询包是否存在 [root@localh ...
- HNOI2018 摸鱼记
HNOI2018 摸鱼记 今天我又来记流水账啦 Day 0 颓废的一天. 我,球爷和杜教在颓膜膜.io ych看起来在搓碧蓝 鬼知道哥达鸭干了什么 学习氛围只局限在机房的一角 后来全体Oier开会,5 ...
- lintcode
public class Solution { /** * @param s: The first string * @param b: The second string * @return tru ...
- 剑指Offer - 九度1503 - 二叉搜索树与双向链表
剑指Offer - 九度1503 - 二叉搜索树与双向链表2014-02-05 23:39 题目描述: 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树 ...