every row of W is a classifier for one of the classes
every row of W is a classifier for one of the classes
As we saw above, every row of W is a classifier for one of the classes. The geometric interpretation of these numbers is that as we change one of the rows of W, the corresponding line in the pixel space will rotate in different directions. The biases b, on the other hand, allow our classifiers to translate the lines. In particular, note that without the bias terms, plugging in xi=0xi=0 would always give score of zero regardless of the weights, so all lines would be forced to cross the origin.
Interpretation of linear classifiers as template matching. Another interpretation for the weights W is that each row of W corresponds to a template (or sometimes also called a prototype) for one of the classes. The score of each class for an image is then obtained by comparing each template with the image using an inner product (or dot product) one by one to find the one that “fits” best. With this terminology, the linear classifier is doing template matching, where the templates are learned. Another way to think of it is that we are still effectively doing Nearest Neighbor, but instead of having thousands of training images we are only using a single image per class (although we will learn it, and it does not necessarily have to be one of the images in the training set), and we use the (negative) inner product as the distance instead of the L1 or L2 distance.
http://cs231n.github.io/linear-classify/
every row of W is a classifier for one of the classes的更多相关文章
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Theano3.3-练习之逻辑回归
是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...
- DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内 ...
- Python 中的实用数据挖掘
本文是 2014 年 12 月我在布拉格经济大学做的名为‘ Python 数据科学’讲座的笔记.欢迎通过 @RadimRehurek 进行提问和评论. 本次讲座的目的是展示一些关于机器学习的高级概念. ...
- Win10配Theano环境和Keras框架
网络上有各种各样的win7 64bit安装theano的方法,我也试过好多,各种各样的问题.因为之前没了解过MinGw等东西,所以安装起来比较费劲,经过不断的尝试,最终我按照以下过程安装成功. 其实过 ...
- javaScript生成二维码(支持中文,生成logo)
资料搜索 选择star最多的两个 第一个就是用的比较多的jquery.qrcode.js(但不支持中文,不能带logo)啦,第二个支持ie6+,支持中文,根据第二个源代码,使得,jquery.qrco ...
- DB2死锁的解决办法
db2 get snapshot for locks on sampledb2 get db cfg for sampledb2 update db cfg using dlchktime 10000 ...
- oracle数据库常用查询
一.数据库信息 1.数据库时间 select to_char(sysdate, 'yyyy-mm-dd hh24:mi:ss') AS dbtime from dual; 2.主机OS类型 SELEC ...
- Stanford机器学习笔记-5.神经网络Neural Networks (part two)
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propag ...
随机推荐
- Linux查看目录大小
du -ah --max-depth=1 a表示显示目录下所有的文件和文件夹(不含子目录) h表示以人类能看懂的方式 max-depth表示目录的深度
- elasticsearch 插入数据
1.单条插入(推荐设定主键id防止重复) public static String addIndex(String index,String type,HashMap<String, Objec ...
- Angular 学习笔记——$provider
<!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...
- react-native 常见问题 及 解决方案
一.报错 Warning:Navigator:isMounted is deprecated. Instead, make sure to clean up subscriptions and pen ...
- javascript洗牌算法 乱序算法 面试题
1.2种方案代码 <!DOCTYPE html> <html lang="zh"> <head> <meta charset=" ...
- iOS 实现启动屏动画(Swift实现,包含图片适配)
代码地址如下:http://www.demodashi.com/demo/12090.html 准备工作 首先我们需要确定作为宣传的图片的宽高比,这个一般是与 UI 确定的.一般启动屏展示会有上下两部 ...
- 腾讯云DevOps 解决方案
地址:https://www.qcloud.com/solution/devops 主要经历的几个阶段: 代码托管 持续集成与交互 测试管理 运维监控 项目管理 在上面图中都有,可以回过去查看.
- 【问题记录】web项目访问时出现404
请一定检查一下项目的Context root是否是你访问时使用的. Context root设置为/时,可以直接用ip+端口访问. Context root设置为项目名的,访问时请带上项目名. 设置方 ...
- Java异常封装(自定义错误码和描写叙述,附源代码)
真正工作了才发现.Java里面的异常在真正工作中使用还是十分普遍的. 什么时候该抛出什么异常,这个是必须知道的. 当然真正工作里面主动抛出的异常都是经过分装过的,自己能够定义错误码和异常描写叙述. 以 ...
- XSD文件详解
XSD (xml Schema Definition) Xml Schema的用途 1. 定义一个Xml文档中都有什么元素 2. 定义一个Xml文档中都会有什么属性 3. 定义某个节点的都有什么 ...