every row of W is a classifier for one of the classes
every row of W is a classifier for one of the classes
As we saw above, every row of W is a classifier for one of the classes. The geometric interpretation of these numbers is that as we change one of the rows of W, the corresponding line in the pixel space will rotate in different directions. The biases b, on the other hand, allow our classifiers to translate the lines. In particular, note that without the bias terms, plugging in xi=0xi=0 would always give score of zero regardless of the weights, so all lines would be forced to cross the origin.
Interpretation of linear classifiers as template matching. Another interpretation for the weights W is that each row of W corresponds to a template (or sometimes also called a prototype) for one of the classes. The score of each class for an image is then obtained by comparing each template with the image using an inner product (or dot product) one by one to find the one that “fits” best. With this terminology, the linear classifier is doing template matching, where the templates are learned. Another way to think of it is that we are still effectively doing Nearest Neighbor, but instead of having thousands of training images we are only using a single image per class (although we will learn it, and it does not necessarily have to be one of the images in the training set), and we use the (negative) inner product as the distance instead of the L1 or L2 distance.
http://cs231n.github.io/linear-classify/

every row of W is a classifier for one of the classes的更多相关文章
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Theano3.3-练习之逻辑回归
是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...
- DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内 ...
- Python 中的实用数据挖掘
本文是 2014 年 12 月我在布拉格经济大学做的名为‘ Python 数据科学’讲座的笔记.欢迎通过 @RadimRehurek 进行提问和评论. 本次讲座的目的是展示一些关于机器学习的高级概念. ...
- Win10配Theano环境和Keras框架
网络上有各种各样的win7 64bit安装theano的方法,我也试过好多,各种各样的问题.因为之前没了解过MinGw等东西,所以安装起来比较费劲,经过不断的尝试,最终我按照以下过程安装成功. 其实过 ...
- javaScript生成二维码(支持中文,生成logo)
资料搜索 选择star最多的两个 第一个就是用的比较多的jquery.qrcode.js(但不支持中文,不能带logo)啦,第二个支持ie6+,支持中文,根据第二个源代码,使得,jquery.qrco ...
- DB2死锁的解决办法
db2 get snapshot for locks on sampledb2 get db cfg for sampledb2 update db cfg using dlchktime 10000 ...
- oracle数据库常用查询
一.数据库信息 1.数据库时间 select to_char(sysdate, 'yyyy-mm-dd hh24:mi:ss') AS dbtime from dual; 2.主机OS类型 SELEC ...
- Stanford机器学习笔记-5.神经网络Neural Networks (part two)
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propag ...
随机推荐
- golang sync.Cond 类
众所周知,go语言在多线程方面的支持是十分完备的.在go语言sync包中提供了一个Cond类,这个类用于goroutine之间进行协作. 这个类并不复杂,只有三个函数,Broadcast() , Si ...
- zabbix通过percona插件监控mysql
percona zabbix mysql-plugin是percona发布的一个使用zabbix监控mysql数据库的工具,这款工具比zabbix自带的监控模板要强大的多,毕竟percona是Mysq ...
- spring自动装配(No qualifying bean )
No qualifying bean of type [com.wfj.service.cms.main.ChannelMng] found for dependency: expected at l ...
- Laravel之命令
一.创建命令 php artisan make:console SendEmails 上述命令将会生成一个类app/Console/Commands/SendEmails.php,当创建命令时,--c ...
- 浅谈JavaScript变量声明提升
前段时间阿里实习生内推,一面就被刷了,也是郁闷.今天系统给发通知,大致意思就是内推环节不足以了解彼此,还可以参加笔试,于是赶紧再投一次.官网流程显示笔试时间3月31日,时间快到了,开始刷题.网上搜了一 ...
- LeetCode :: Sum Root to Leaf Numbers [tree、dfs]
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- mac权限
mac文件后面出现@权限 去除方法: xattr -c 文件名 目录也可以
- SpringSecurity学习二----------实现自定义登录界面
© 版权声明:本文为博主原创文章,转载请注明出处 1.项目结构 2.pom.xml <project xmlns="http://maven.apache.org/POM/4.0.0& ...
- SVN 钩子操作-同步更新web目录
一个简单的钩子演示:也可以网上搜索其他高级的 本次想要达到的功能是:每次用户commit 到仓库后,仓库的钩子会自动把程序又更新的www/的web发布目录 1.现在web目录下创建一个test.com ...
- 使用wifi连接eclipse进行android程序调试
首先手机必须是root过的.能够使用百度一键root工具. 然后,在手机中打开这个终端(terminal)应用,输入例如以下命令: su setprop service ...