every row of W is a classifier for one of the classes
every row of W is a classifier for one of the classes
As we saw above, every row of W is a classifier for one of the classes. The geometric interpretation of these numbers is that as we change one of the rows of W, the corresponding line in the pixel space will rotate in different directions. The biases b, on the other hand, allow our classifiers to translate the lines. In particular, note that without the bias terms, plugging in xi=0xi=0 would always give score of zero regardless of the weights, so all lines would be forced to cross the origin.
Interpretation of linear classifiers as template matching. Another interpretation for the weights W is that each row of W corresponds to a template (or sometimes also called a prototype) for one of the classes. The score of each class for an image is then obtained by comparing each template with the image using an inner product (or dot product) one by one to find the one that “fits” best. With this terminology, the linear classifier is doing template matching, where the templates are learned. Another way to think of it is that we are still effectively doing Nearest Neighbor, but instead of having thousands of training images we are only using a single image per class (although we will learn it, and it does not necessarily have to be one of the images in the training set), and we use the (negative) inner product as the distance instead of the L1 or L2 distance.
http://cs231n.github.io/linear-classify/

every row of W is a classifier for one of the classes的更多相关文章
- Machine Learning Algorithms Study Notes(2)--Supervised Learning
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...
- Theano3.3-练习之逻辑回归
是官网上theano的逻辑回归的练习(http://deeplearning.net/tutorial/logreg.html#logreg)的讲解. Classifying MNIST digits ...
- DeepLearning之路(一)逻辑回归
逻辑回归 1. 总述 逻辑回归来源于回归分析,用来解决分类问题,即预测值变为较少数量的离散值. 2. 基本概念 回归分析(Regression Analysis):存在一堆观测资料,希望获得数据内 ...
- Python 中的实用数据挖掘
本文是 2014 年 12 月我在布拉格经济大学做的名为‘ Python 数据科学’讲座的笔记.欢迎通过 @RadimRehurek 进行提问和评论. 本次讲座的目的是展示一些关于机器学习的高级概念. ...
- Win10配Theano环境和Keras框架
网络上有各种各样的win7 64bit安装theano的方法,我也试过好多,各种各样的问题.因为之前没了解过MinGw等东西,所以安装起来比较费劲,经过不断的尝试,最终我按照以下过程安装成功. 其实过 ...
- javaScript生成二维码(支持中文,生成logo)
资料搜索 选择star最多的两个 第一个就是用的比较多的jquery.qrcode.js(但不支持中文,不能带logo)啦,第二个支持ie6+,支持中文,根据第二个源代码,使得,jquery.qrco ...
- DB2死锁的解决办法
db2 get snapshot for locks on sampledb2 get db cfg for sampledb2 update db cfg using dlchktime 10000 ...
- oracle数据库常用查询
一.数据库信息 1.数据库时间 select to_char(sysdate, 'yyyy-mm-dd hh24:mi:ss') AS dbtime from dual; 2.主机OS类型 SELEC ...
- Stanford机器学习笔记-5.神经网络Neural Networks (part two)
5 Neural Networks (part two) content: 5 Neural Networks (part two) 5.1 cost function 5.2 Back Propag ...
随机推荐
- 2017.8.4 Creating Server TCP listening socket *:6379: bind: No such file or directory
启动redis时出现如下错误: 解决办法:按顺序输入如下命令就可以连接成功. 1. redis-cli.exe 2. shutdown 3. exit 4. redis-server.exe 参考来 ...
- P6 EPPM 16 R1安装和配置文档
白桃花心木P6企业项目组合管理文档库 描述 链接 下载 零件号 16 R1用户和集成文档 查看库 下载 E68199-01 16 R1安装和配置文档 查看库 下载 E68198-01 描述 链接 ...
- Java的位运算
左移位操作 左移位运算的符号为[<<],左移位运算符左面的操作元称作被移位数,右面的操作数称作移位量. 左移位运算是双目运算符,操作元必须是整型类型的数据,其移动过程是:[a <&l ...
- 最新iOS发布App Store详细图文教程~
网上有很多关于iOS发布上架的教程,但大多比较旧而且不完整.不够清晰.所以整理了一个详细完整的iOS APP发布上架App Store的图文教程.分享给小白到大神路上前进的你我. 上架iOS需要一个苹 ...
- red5截屏
在red5-web.xml添加 <bean id="rtmpSampleAccess" class="org.red5.server.stream.RtmpSamp ...
- Hbase笔记:批量导入
工作中可能会有对HBase的复杂操作,我们现在对HBase的操作太简单了.复杂操作一般用HBaseScan操作,还有用框架对HBase进行复杂操作,iparler,sharker.我们说HBase是数 ...
- Delphi 与 C/C++ 数据类型对照表(最新的tokyo)
更新,下面这table为最新的tokyo基本数据类型与C++的对照关系: Delphi to C++ types mapping Go Up to Support for Delphi Data ...
- UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法 比較不好控制 ...
- 使Gallery时设置居左显示
Gallery中的图片默认是居中显示的.可是在非常多情况下我们须要它居左显示,这样做有一个简单方法.就是把Gallery的left设置为负多少,如以下的方法: Drawable drawable=ca ...
- 使用GnuPG(PGP)加密信息及数字签名教程_转
所谓加解密就是一方以密钥加密,另一外收到文件后以相对应的密钥解密,从而获取原始文件.数字签名的过程:信息是通过普通未加密方式发送信息给对方的,只是在每条信息后面都会附加一坨字符(名曰:签名)(或信息与 ...