YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1- p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF
Each test case contains two lines. 
The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step. 
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000 题意:一条长路有 N (1 ≤ N ≤ 10)颗地雷,一个人走一步的概率是 p ,走两步的概率是 (1-p) ,然后给出 N 颗地雷的位置 ,问这个人安全走过所有地雷的概率是多少 题解:对于一个位置x,设能走到的概率是 P(x) ,那么 P(x) = P(x-1)*p + P(x-2)*(1-p) 这个数x可能很大,所以需要矩阵快速幂
然后将整个的路看成由地雷分割的 N 段路
[0 -- x1]
[x1+1 -- x2]
[x2+1 -- x3]
... ...
所以,他能安全过去的概率就是 N 段都能过去的连乘
 #include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
#define MAXN 12 int n;
double p;
int bomb[MAXN]; double base[][];
double res[][]; //[ p(x) ] = [ p , 1-p ]^(x-1) * [ 1 ]
//[ p(x-1) ] [ 1 , 0 ] [ 0 ]
void quick_mi(int x)
{
double tp[][];
while (x)
{
if (x%==)
{
for (int i=;i<;i++)
for (int j=;j<;j++)
{
tp[i][j]=;
for (int k=;k<;k++)
tp[i][j]+=res[i][k]*base[k][j];
}
for (int i=;i<;i++)
for (int j=;j<;j++)
res[i][j]=tp[i][j];
}
for (int i=;i<;i++)
for (int j=;j<;j++)
{
tp[i][j]=;
for (int k=;k<;k++)
tp[i][j]+=base[i][k]*base[k][j];
}
for (int i=;i<;i++)
for (int j=;j<;j++)
base[i][j]=tp[i][j];
x/=;
}
} double Mi(int x)//处于位置1踩到位置 x 的概率
{
if (x==) return ;
base[][]=p,base[][]=1.0-p;
base[][]=,base[][]=;
res[][]=;res[][]=;
res[][]=;res[][]=;
quick_mi(x-);
return res[][];
} int main()
{
while (scanf("%d%lf",&n,&p)!=EOF)
{
for (int i=;i<n;i++)
scanf("%d",&bomb[i]);
sort(bomb,bomb+n); double xxx=Mi(bomb[]); //死了的概率
double ans = 1.0-xxx; //没死
for (int i=;i<n;i++)
{
xxx =Mi(bomb[i]-bomb[i-]); //化简后
ans *= (1.0-xxx);
}
printf("%.7lf\n",ans);
}
return ;
}

Scout YYF I (概率+矩阵快速幂)的更多相关文章

  1. POJ 3744 Scout YYF I(矩阵快速幂优化+概率dp)

    http://poj.org/problem?id=3744 题意: 现在有个屌丝要穿越一个雷区,雷分布在一条直线上,但是分布的范围很大,现在这个屌丝从1出发,p的概率往前走1步,1-p的概率往前走2 ...

  2. POJ3744Scout YYF I(求概率 + 矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6757   Accepted: 1960 Descr ...

  3. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂

    题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...

  4. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

  5. poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂

      (Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  6. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  7. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  8. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  9. POJ 3744 【矩阵快速幂优化 概率DP】

    搞懂了什么是矩阵快速幂优化.... 这道题的重点不是DP. /* 题意: 小明要走某条路,按照个人兴致,向前走一步的概率是p,向前跳两步的概率是1-p,但是地上有地雷,给了地雷的x坐标,(一维),求小 ...

随机推荐

  1. Linux用ps命令查找进程PID再用kill命令终止进程的方法

    使用linux操作系统,难免遇到一些软件"卡壳"的问题,这时就需要使用linux下强大的kill命令来结束相关进程.这在linux系统下是极其容易的事情,你只需要kill xxx即 ...

  2. zabbix自动化监控之自动注册

    自动注册与自动发现刚好相反,是zabbix agent主动联系zabbix server,最后由zabbix server将这些agent加到host里.活动的Zabbix agent可以自动注册到服 ...

  3. 查看文章 mysql:表注释和字段注释

    查看文章 mysql:表注释和字段注释 学习了:https://blog.csdn.net/chamtianjiao/article/details/6698690 2 修改表的注释 alter ta ...

  4. azkaban2.5 具体配置以及使用方式

    azkaban支持shell.java.mapreduce以及hive的工作流调度,在对这些不同类型任务调度之前须要配置所相应的插件:azkaban总体分为两部分azkaban executor se ...

  5. py定义变量-循环-条件判断

    定义变量 # print('hahaha')name = " let'go "title = '刘伟长得 "很帅"!'conent = '''     let' ...

  6. linux vi设置行号

    首先,vi的配置文件是/etc/vim/vimrc,不同系统可能有出入,不过我建议大家在home中建立一个.vimrc文件,照样可以达到同样的效果.其实/etc中的配置是全局的,home中的配置只针对 ...

  7. window.location网页URL信息

    window.location属性 描述 hash 设置或获取 href 属性中在井号“#”后面的分段. host 设置或获取 location 或 URL 的 hostname 和 port 号码. ...

  8. 安装npm install时,长时间停留在某一处的解决方案

    默认情况npm install安装时,会从 github.com 上下载文件,大部分安装不成功的原因都源自这里 因为 GitHub Releases 里的文件都托管在 s3.amazonaws.com ...

  9. centos自动安装镜像脚本

    #!/bin/bash ######################################################################################## ...

  10. squid cache 服务器端的安装,配置

    一,什么squid Squid是一个高性能的代理缓存服务器,可以加快内部网浏览Internet的速度,提高客户机的访问命中率.Squid不仅支持HTTP协议, 还支持FTP.gopher.SSL和WA ...