Circle and Points
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 7327   Accepted: 2651
Case Time Limit: 2000MS

Description

You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle.


Fig 1. Circle and Points

Input

The
input consists of a series of data sets, followed by a single line only
containing a single character '0', which indicates the end of the input.
Each data set begins with a line containing an integer N, which
indicates the number of points in the data set. It is followed by N
lines describing the coordinates of the points. Each of the N lines has
two decimal fractions X and Y, describing the x- and y-coordinates of a
point, respectively. They are given with five digits after the decimal
point.

You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0
<= Y <= 10.0. No two points are closer than 0.0001. No two points
in a data set are approximately at a distance of 2.0. More precisely,
for any two points in a data set, the distance d between the two never
satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a
data set are simultaneously very close to a single circle of radius one.
More precisely, let P1, P2, and P3 be any three points in a data set,
and d1, d2, and d3 the distances from an arbitrarily selected point in
the xy-plane to each of them respectively. Then it never simultaneously
holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).

Output

For
each data set, print a single line containing the maximum number of
points in the data set that can be simultaneously enclosed by a circle
of radius one. No other characters including leading and trailing spaces
should be printed.

Sample Input

3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0

Sample Output

2
5
5
11

代码转自,不想去弄了。。以后就做模板用好了 http://www.cnblogs.com/-sunshine/archive/2012/10/11/2719859.html
贴个模板:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const int N = ;
struct Point{
double x,y;
}p[N];
struct Node{
double angle;
bool in;
}arc[];
int n,cnt;
double R;
double dist(Point p1,Point p2){
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool cmp(Node n1,Node n2){
return n1.angle!=n2.angle?n1.angle<n2.angle:n1.in>n2.in;
}
void MaxCircleCover(){
int ans=;
for(int i=;i<n;i++){
int cnt=;
for(int j=;j<n;j++){
if(i==j) continue;
if(dist(p[i],p[j])>R*) continue;
double angle=atan2(p[i].y-p[j].y,p[i].x-p[j].x);
double phi=acos(dist(p[i],p[j])/);
arc[cnt].angle=angle-phi;arc[cnt++].in=true;
arc[cnt].angle=angle+phi;arc[cnt++].in=false;
}
sort(arc,arc+cnt,cmp);
int tmp=;
for(int i=;i<cnt;i++){
if(arc[i].in) tmp++;
else tmp--;
ans=max(ans,tmp);
}
}
printf("%d\n",ans);
}
int main(){
while(scanf("%d",&n)!=EOF&&n){
//scanf("%lf",&R);
R = ; //此题R为1
for(int i=;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
MaxCircleCover();
}
return ;
}

poj 1981(单位圆覆盖最多点问题模板)的更多相关文章

  1. bzoj1338: Pku1981 Circle and Points单位圆覆盖

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1338 1338: Pku1981 Circle and Points单位圆覆盖 Time ...

  2. POJ 2914 - Minimum Cut - [stoer-wagner算法讲解/模板]

    首先是当年stoer和wagner两位大佬发表的关于这个算法的论文:A Simple Min-Cut Algorithm 直接上算法部分: 分割线 begin 在这整篇论文中,我们假设一个普通无向图G ...

  3. poj 1981 Circle and Points

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8131   Accepted: 2899 ...

  4. 【[Offer收割]编程练习赛14 D】剑刃风暴(半径为R的圆能够覆盖的平面上最多点数目模板)

    [题目链接]:http://hihocoder.com/problemset/problem/1508 [题意] [题解] 求一个半径为R的圆能够覆盖的平面上的n个点中最多的点数; O(N2log2N ...

  5. POJ 3468 A Simple Problem with Integers (线段树多点更新模板)

    题意: 给定一个区间, 每个区间有一个初值, 然后给出Q个操作, C a b c是给[a,b]中每个数加上c, Q a b 是查询[a,b]的和 代码: #include <cstdio> ...

  6. POJ-1981 Circle and Points 单位圆覆盖

    题目链接:http://poj.org/problem?id=1981 容易想到直接枚举两个点,然后确定一个圆来枚举,算法复杂度O(n^3). 这题还有O(n^2*lg n)的算法.将每个点扩展为单位 ...

  7. POJ 1981 Circle and Points (扫描线)

    [题目链接] http://poj.org/problem?id=1981 [题目大意] 给出平面上一些点,问一个半径为1的圆最多可以覆盖几个点 [题解] 我们对于每个点画半径为1的圆,那么在两圆交弧 ...

  8. 【POJ 1981】Circle and Points(已知圆上两点求圆心坐标)

    [题目链接]:http://poj.org/problem?id=1981 [题意] 给你n个点(n<=300); 然后给你一个半径R: 让你在平面上找一个半径为R的圆; 这里R=1 使得这个圆 ...

  9. 【POJ 1981 】Circle and Points

    当两个点距离小于直径时,由它们为弦确定的一个单位圆(虽然有两个圆,但是想一想知道只算一个就可以)来计算覆盖多少点. #include <cstdio> #include <cmath ...

随机推荐

  1. Java语言基础---两变量间的交换

    使用中间变量交换两个变量的值 int a = 10 , b = 11 , m; m = a; a = b; b = m; 不使用中间变量交换两个变量的值 int a = 10; int b = 11; ...

  2. [Python3.x]python3.5实现socket通讯(TCP)

    TCP连接: tcp是面向连接的一个协议,意味着,客户端和服务器开发发送数据之前,需要先握手创建一个TCP连接.TCP连接的一端与客户端套接字相互联系,另一端与服务器套接字相联系.当创建该TCP连接的 ...

  3. erlang节点局域网通信

    节点1: F:\WorkSpace\Server\src>erl -name hw@192.168.10.142 -setcookie 4213 consulting .erlang in &q ...

  4. XSS注入常用语句积累

    <script>alert('hello,gaga!');</script> //经典语句,哈哈! >"'><img src="javas ...

  5. (原)Unreal 渲染模块 渲染流程

    @author:白袍小道 浏览分享随缘,评论不喷亦可.     扯淡部分: 在temp中,乱七八糟的说了下大致的UE过程.下面我们还是稍微别那么任性,一步步来吧.     UE渲染模块牵扯到场景遍历. ...

  6. Leetcode 659.分割数组为连续子序列

    分割数组为连续子序列 输入一个按升序排序的整数数组(可能包含重复数字),你需要将它们分割成几个子序列,其中每个子序列至少包含三个连续整数.返回你是否能做出这样的分割? 示例 1: 输入: [1,2,3 ...

  7. CPU指令集不同导致的core分析

    最近程序需要支持CGSL系统运行,测试中发现相同操作系统的两台机器,编译机运行正常,测试机coredump.core信息汇总如下,可以看出是由于测试机不支持编译后的指令导致的问题: Program t ...

  8. 第五章 Internet协议

    写在开头: 埋头学习也差不多半个月了,达到了这半个月每天都会去图书馆的目标.确实挺忙的,不管在学习上,部门社团上,党建上.有时候为了多学一些总是会挤掉了其他事情的一些时间.但是自己时刻提醒着自己不要太 ...

  9. POJ 1064 Cable master | 二分+精度

    题目: 给n个长度为l[i](浮点数)的绳子,要分成k份相同长度的 问最多多长 题解: 二分长度,控制循环次数来控制精度,输出也要控制精度<wa了好多次> #include<cstd ...

  10. Educational Codeforces Round 2 B. Queries about less or equal elements

    打开题目连接 题意:给2个数组(无序的)啊a,b,判断b数组中的每一个元素大于a数组中个数. ACcode: #include <iostream> #include <vector ...