Circle and Points
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 7327   Accepted: 2651
Case Time Limit: 2000MS

Description

You are given N points in the xy-plane. You have a circle of radius one and move it on the xy-plane, so as to enclose as many of the points as possible. Find how many points can be simultaneously enclosed at the maximum. A point is considered enclosed by a circle when it is inside or on the circle.


Fig 1. Circle and Points

Input

The
input consists of a series of data sets, followed by a single line only
containing a single character '0', which indicates the end of the input.
Each data set begins with a line containing an integer N, which
indicates the number of points in the data set. It is followed by N
lines describing the coordinates of the points. Each of the N lines has
two decimal fractions X and Y, describing the x- and y-coordinates of a
point, respectively. They are given with five digits after the decimal
point.

You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0
<= Y <= 10.0. No two points are closer than 0.0001. No two points
in a data set are approximately at a distance of 2.0. More precisely,
for any two points in a data set, the distance d between the two never
satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a
data set are simultaneously very close to a single circle of radius one.
More precisely, let P1, P2, and P3 be any three points in a data set,
and d1, d2, and d3 the distances from an arbitrarily selected point in
the xy-plane to each of them respectively. Then it never simultaneously
holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).

Output

For
each data set, print a single line containing the maximum number of
points in the data set that can be simultaneously enclosed by a circle
of radius one. No other characters including leading and trailing spaces
should be printed.

Sample Input

3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0

Sample Output

2
5
5
11

代码转自,不想去弄了。。以后就做模板用好了 http://www.cnblogs.com/-sunshine/archive/2012/10/11/2719859.html
贴个模板:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const int N = ;
struct Point{
double x,y;
}p[N];
struct Node{
double angle;
bool in;
}arc[];
int n,cnt;
double R;
double dist(Point p1,Point p2){
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool cmp(Node n1,Node n2){
return n1.angle!=n2.angle?n1.angle<n2.angle:n1.in>n2.in;
}
void MaxCircleCover(){
int ans=;
for(int i=;i<n;i++){
int cnt=;
for(int j=;j<n;j++){
if(i==j) continue;
if(dist(p[i],p[j])>R*) continue;
double angle=atan2(p[i].y-p[j].y,p[i].x-p[j].x);
double phi=acos(dist(p[i],p[j])/);
arc[cnt].angle=angle-phi;arc[cnt++].in=true;
arc[cnt].angle=angle+phi;arc[cnt++].in=false;
}
sort(arc,arc+cnt,cmp);
int tmp=;
for(int i=;i<cnt;i++){
if(arc[i].in) tmp++;
else tmp--;
ans=max(ans,tmp);
}
}
printf("%d\n",ans);
}
int main(){
while(scanf("%d",&n)!=EOF&&n){
//scanf("%lf",&R);
R = ; //此题R为1
for(int i=;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
MaxCircleCover();
}
return ;
}

poj 1981(单位圆覆盖最多点问题模板)的更多相关文章

  1. bzoj1338: Pku1981 Circle and Points单位圆覆盖

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1338 1338: Pku1981 Circle and Points单位圆覆盖 Time ...

  2. POJ 2914 - Minimum Cut - [stoer-wagner算法讲解/模板]

    首先是当年stoer和wagner两位大佬发表的关于这个算法的论文:A Simple Min-Cut Algorithm 直接上算法部分: 分割线 begin 在这整篇论文中,我们假设一个普通无向图G ...

  3. poj 1981 Circle and Points

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8131   Accepted: 2899 ...

  4. 【[Offer收割]编程练习赛14 D】剑刃风暴(半径为R的圆能够覆盖的平面上最多点数目模板)

    [题目链接]:http://hihocoder.com/problemset/problem/1508 [题意] [题解] 求一个半径为R的圆能够覆盖的平面上的n个点中最多的点数; O(N2log2N ...

  5. POJ 3468 A Simple Problem with Integers (线段树多点更新模板)

    题意: 给定一个区间, 每个区间有一个初值, 然后给出Q个操作, C a b c是给[a,b]中每个数加上c, Q a b 是查询[a,b]的和 代码: #include <cstdio> ...

  6. POJ-1981 Circle and Points 单位圆覆盖

    题目链接:http://poj.org/problem?id=1981 容易想到直接枚举两个点,然后确定一个圆来枚举,算法复杂度O(n^3). 这题还有O(n^2*lg n)的算法.将每个点扩展为单位 ...

  7. POJ 1981 Circle and Points (扫描线)

    [题目链接] http://poj.org/problem?id=1981 [题目大意] 给出平面上一些点,问一个半径为1的圆最多可以覆盖几个点 [题解] 我们对于每个点画半径为1的圆,那么在两圆交弧 ...

  8. 【POJ 1981】Circle and Points(已知圆上两点求圆心坐标)

    [题目链接]:http://poj.org/problem?id=1981 [题意] 给你n个点(n<=300); 然后给你一个半径R: 让你在平面上找一个半径为R的圆; 这里R=1 使得这个圆 ...

  9. 【POJ 1981 】Circle and Points

    当两个点距离小于直径时,由它们为弦确定的一个单位圆(虽然有两个圆,但是想一想知道只算一个就可以)来计算覆盖多少点. #include <cstdio> #include <cmath ...

随机推荐

  1. sourceInsight *** more bytes are required

    现象:用sourceinsight修改的文件无法保存,提示 No enough space to save "XXX", xxx more bytes are required. ...

  2. loj2472 「九省联考 2018」IIIDX

    ref #include <algorithm> #include <iostream> #include <cstdio> using namespace std ...

  3. java.math.BigDecimal cannot be cast to java.lang.String解决方法

    从mysql数据库里取decimal(18,2)封装到Map<String,String>中 BigDecimal b = new BigDecimal(resultMap.get(&qu ...

  4. Visual Studio 提示某个dll文件(已在Microsoft Visual Studio 外对该文件进行了修改,是否重新加载它)

    如题: Visual Studio 提示某个dll文件(已在Microsoft Visual Studio 外对该文件进行了修改,是否重新加载它) 如果选择“是”,那恭喜你,第二次生成的时候,引用这个 ...

  5. fiddler如何抓取夜神模拟器上的包

    一.设置Fiddler代理 1.点击Tools-Fiddler Options进入Fiddler Options页面 2.点击Connections,将Fiddler listens on port设 ...

  6. Python 3基础教程6-for循环语句

    本文介绍另外一种循环语句,for循环,直接看例子. 用for实现打印1到9的数字. 方法一:写入一个列表,然后遍历列表 # 这里介绍 for循环# 打印1到9 exampleList = [1,2,3 ...

  7. 1、python 循环控制

     案例1: lucky_num = 19 input_num = int(input("Input the guess number:")) if input_num == luc ...

  8. (原)Unreal 渲染模块引言Temp

            @author:白袍小道     引言 本文只在对Unreal渲染模块做一些详细的理解,务求能分析出个大概. 其中框架的思想和实现的过程,是非常值得学习和推敲一二的. 涉及资源系统,材 ...

  9. cloud.cfg_for_centos

    users: - default disable_root: 0 ssh_pwauth: 1 locale_configfile: /etc/sysconfig/i18n mount_default_ ...

  10. SPOJ 149 FSHEEP Fencing in the Sheep ( 计算几何 + 二分 )

    以下摘自SPOJ泛做表格: 题意:给定一个星形多边形,而且给出了一个可以看到形内所有点的位置(我们称这个点为观察点),让你判断有多少个点位于多边形内. 时间复杂度:O(mlogn) 将多边形上的点按极 ...