poj 1981(单位圆覆盖最多点问题模板)
Time Limit: 5000MS | Memory Limit: 30000K | |
Total Submissions: 7327 | Accepted: 2651 | |
Case Time Limit: 2000MS |
Description

Fig 1. Circle and Points
Input
input consists of a series of data sets, followed by a single line only
containing a single character '0', which indicates the end of the input.
Each data set begins with a line containing an integer N, which
indicates the number of points in the data set. It is followed by N
lines describing the coordinates of the points. Each of the N lines has
two decimal fractions X and Y, describing the x- and y-coordinates of a
point, respectively. They are given with five digits after the decimal
point.
You may assume 1 <= N <= 300, 0.0 <= X <= 10.0, and 0.0
<= Y <= 10.0. No two points are closer than 0.0001. No two points
in a data set are approximately at a distance of 2.0. More precisely,
for any two points in a data set, the distance d between the two never
satisfies 1.9999 <= d <= 2.0001. Finally, no three points in a
data set are simultaneously very close to a single circle of radius one.
More precisely, let P1, P2, and P3 be any three points in a data set,
and d1, d2, and d3 the distances from an arbitrarily selected point in
the xy-plane to each of them respectively. Then it never simultaneously
holds that 0.9999 <= di <= 1.0001 (i = 1, 2, 3).
Output
each data set, print a single line containing the maximum number of
points in the data set that can be simultaneously enclosed by a circle
of radius one. No other characters including leading and trailing spaces
should be printed.
Sample Input
3
6.47634 7.69628
5.16828 4.79915
6.69533 6.20378
6
7.15296 4.08328
6.50827 2.69466
5.91219 3.86661
5.29853 4.16097
6.10838 3.46039
6.34060 2.41599
8
7.90650 4.01746
4.10998 4.18354
4.67289 4.01887
6.33885 4.28388
4.98106 3.82728
5.12379 5.16473
7.84664 4.67693
4.02776 3.87990
20
6.65128 5.47490
6.42743 6.26189
6.35864 4.61611
6.59020 4.54228
4.43967 5.70059
4.38226 5.70536
5.50755 6.18163
7.41971 6.13668
6.71936 3.04496
5.61832 4.23857
5.99424 4.29328
5.60961 4.32998
6.82242 5.79683
5.44693 3.82724
6.70906 3.65736
7.89087 5.68000
6.23300 4.59530
5.92401 4.92329
6.24168 3.81389
6.22671 3.62210
0
Sample Output
2
5
5
11
代码转自,不想去弄了。。以后就做模板用好了 http://www.cnblogs.com/-sunshine/archive/2012/10/11/2719859.html
贴个模板:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include <stdlib.h>
#include<math.h>
#include<algorithm>
using namespace std;
const int N = ;
struct Point{
double x,y;
}p[N];
struct Node{
double angle;
bool in;
}arc[];
int n,cnt;
double R;
double dist(Point p1,Point p2){
return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
}
bool cmp(Node n1,Node n2){
return n1.angle!=n2.angle?n1.angle<n2.angle:n1.in>n2.in;
}
void MaxCircleCover(){
int ans=;
for(int i=;i<n;i++){
int cnt=;
for(int j=;j<n;j++){
if(i==j) continue;
if(dist(p[i],p[j])>R*) continue;
double angle=atan2(p[i].y-p[j].y,p[i].x-p[j].x);
double phi=acos(dist(p[i],p[j])/);
arc[cnt].angle=angle-phi;arc[cnt++].in=true;
arc[cnt].angle=angle+phi;arc[cnt++].in=false;
}
sort(arc,arc+cnt,cmp);
int tmp=;
for(int i=;i<cnt;i++){
if(arc[i].in) tmp++;
else tmp--;
ans=max(ans,tmp);
}
}
printf("%d\n",ans);
}
int main(){
while(scanf("%d",&n)!=EOF&&n){
//scanf("%lf",&R);
R = ; //此题R为1
for(int i=;i<n;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
MaxCircleCover();
}
return ;
}
poj 1981(单位圆覆盖最多点问题模板)的更多相关文章
- bzoj1338: Pku1981 Circle and Points单位圆覆盖
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1338 1338: Pku1981 Circle and Points单位圆覆盖 Time ...
- POJ 2914 - Minimum Cut - [stoer-wagner算法讲解/模板]
首先是当年stoer和wagner两位大佬发表的关于这个算法的论文:A Simple Min-Cut Algorithm 直接上算法部分: 分割线 begin 在这整篇论文中,我们假设一个普通无向图G ...
- poj 1981 Circle and Points
Circle and Points Time Limit: 5000MS Memory Limit: 30000K Total Submissions: 8131 Accepted: 2899 ...
- 【[Offer收割]编程练习赛14 D】剑刃风暴(半径为R的圆能够覆盖的平面上最多点数目模板)
[题目链接]:http://hihocoder.com/problemset/problem/1508 [题意] [题解] 求一个半径为R的圆能够覆盖的平面上的n个点中最多的点数; O(N2log2N ...
- POJ 3468 A Simple Problem with Integers (线段树多点更新模板)
题意: 给定一个区间, 每个区间有一个初值, 然后给出Q个操作, C a b c是给[a,b]中每个数加上c, Q a b 是查询[a,b]的和 代码: #include <cstdio> ...
- POJ-1981 Circle and Points 单位圆覆盖
题目链接:http://poj.org/problem?id=1981 容易想到直接枚举两个点,然后确定一个圆来枚举,算法复杂度O(n^3). 这题还有O(n^2*lg n)的算法.将每个点扩展为单位 ...
- POJ 1981 Circle and Points (扫描线)
[题目链接] http://poj.org/problem?id=1981 [题目大意] 给出平面上一些点,问一个半径为1的圆最多可以覆盖几个点 [题解] 我们对于每个点画半径为1的圆,那么在两圆交弧 ...
- 【POJ 1981】Circle and Points(已知圆上两点求圆心坐标)
[题目链接]:http://poj.org/problem?id=1981 [题意] 给你n个点(n<=300); 然后给你一个半径R: 让你在平面上找一个半径为R的圆; 这里R=1 使得这个圆 ...
- 【POJ 1981 】Circle and Points
当两个点距离小于直径时,由它们为弦确定的一个单位圆(虽然有两个圆,但是想一想知道只算一个就可以)来计算覆盖多少点. #include <cstdio> #include <cmath ...
随机推荐
- 计算机指令集CISC与RISC
当接触一新CPU时商家会首先描述它是RISC指令集,这意味着什么,从这个描述你能了解多少CPU特性信息? 复杂指令集计算机(CISC) 长期来,计算机性能的提高往往是通过增加硬件的复杂性来获得.随着集 ...
- 《Cracking the Coding Interview》——第18章:难题——题目9
2014-04-29 04:18 题目:有一连串的数被读入,设计一个数据结构,能随时返回当前所有数的中位数. 解法:用一个大顶堆,一个小顶堆将数分成数量最接近的两份,就能轻松得到中位数了. 代码: / ...
- Json 转换 1 转成 true 0 转成false
- 发布“豪情”设计的新博客皮肤-darkgreentrip
豪情 (http://www.cnblogs.com/jikey/)是一名在上海的前端开发人员,长期驻扎在园子里.他为大家设计了一款新的博客皮肤——darkgreentrip. 以下是该博客皮肤的介绍 ...
- Python全栈工程师 (exercises)
# 1:给定一个数,判断他是正数,负数,还是0 a = int(input("请输入一该个整数")) if a == 0: print(a, "是0") eli ...
- Windows后续处理工作
1.远程桌面开启,应预先开启windows防火墙,并放行“远程桌面”(TCP 3389)端口,防止用户自行开启防火墙时操作错误. 2.防火墙高级安全-需放行ICMP 3.补丁更新,更新完重启 4.本地 ...
- HDU 4288 Coder ( 离散化 + 离线 + 线段树 )
这题跟ZOJ 3606的解题思路很相似. 题意:有3中操作:1.向集合中增加一个数x(1≤x≤1e9):2.从集合中删去一个数x(保证这个数存在):3.查询集合中所有位置满足i%5==3的数a[i]的 ...
- ocrosoft Contest1316 - 信奥编程之路~~~~~第三关 问题 I: 寻找大富翁
http://acm.ocrosoft.com/problem.php?cid=1316&pid=8 题目描述 浙江杭州某镇共有n个人,请找出该镇上的前m个大富翁. 输入 输入包含多组测试用例 ...
- select chosen 禁用下拉框某一个option
$("#tbParBudCode option[value='" + budCodeId + "']").attr("disabled", ...
- 启动Tomcat时的常见问题及解决办法
问题一:环境变量 1.检查jdk 验证jdk的配置,在运行-cmd中输入 java -version 即表示安装成功. 如果jdk没有问题,还需要配置两个环境变量.找到jdk和jre的路径,配置JAV ...