传送门

分析

我们二分球的直径,然后就像奶酪那道题一样,将所有距离相遇直径的点用并查集连在一起,然后枚举所有与上边的顶距离小于直径的点和所有与下边的距离小于直径的点,如果它们被并查集连在一起则代表这个球无法通过。于是可以得到答案。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int n,fa[],x[],y[],is1[],is2[];
double L;
inline void init(){
for(int i=;i<=n;i++)fa[i]=i;
memset(is1,,sizeof(is1));
memset(is2,,sizeof(is2));
}
inline int sf(int x){return fa[x]==x?x:fa[x]=sf(fa[x]);}
inline double d(int a,int b){
return double(sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b])));
}
inline bool ck(double mid){
int i,j,k;
init();
for(i=;i<=n;i++){
if(L-y[i]<mid)is1[i]=;
if(y[i]<mid)is2[i]=;
}
for(i=;i<=n;i++)
for(j=;j<=n;j++)
if(d(i,j)<mid&&sf(i)!=sf(j))fa[sf(i)]=sf(j);
for(i=;i<=n;i++)
if(is1[i])
for(j=;j<=n;j++)
if(is2[j])
if(sf(i)==sf(j))return ;
return ;
}
int main(){
int i,j,k;
double le,ri,mid;
cin>>n>>L;
for(i=;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
}
le=,ri=L+;
while(ri-le>0.0001){
mid=(le+ri)/;
if(ck(mid))le=mid;
else ri=mid;
}
printf("%0.3lf\n",le);
return ;
}

ZROI2018提高day4t2的更多相关文章

  1. ZROI2018提高day9t1

    传送门 分析 我们首先想到的自然是根据大小关系建图,在这之后我们跑一遍拓扑排序 但是由于l和r的限制关系我们需要对传统的拓扑排序做一些改变 我们考虑将所有入度为0且现在的拓扑序号已经大于等于l的点放入 ...

  2. ZROI2018提高day6t2

    传送门 分析 将所有字母分别转化为1~26,之后将字符串的空位补全为0,?设为-1,我们设dp[p][c][le][ri]表示考虑le到ri个字符串且从第p位开始考虑,这一位最小填c的方案数,具体转移 ...

  3. ZROI2018提高day6t1

    传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...

  4. ZROI2018提高day5t3

    传送门 分析我们可以根据性质将这个序列构造成一个环:0,a[1~n],0,a[n~1] 这中间的0是为了起间隔作用的. 我们又知道b[i]=a[i-1]^a[i+1] c[i]=b[i-1]^b[i+ ...

  5. ZROI2018提高day5t2

    传送门 分析 考场上傻了,写了个树剖还莫名weila...... 实际就是按顺序考虑每个点,然后从他往上找,一边走一边将走过的边染色,如果走到以前染过色的边就停下.对于每一个a[i]的答案就是之前走过 ...

  6. ZROI2018提高day5t1

    传送门 分析 我们不难将条件转换为前缀和的形式,即 pre[i]>=pre[i-1]*2,pre[i]>0,pre[k]=n. 所以我们用dp[i][j]表示考虑到第i个数且pre[i]= ...

  7. ZROI2018提高day4t3

    传送门 分析 我们假设如果一个点是0则它的值为-1,如果一个点是1则值为1,则一个区间的答案便是max(pre[i]+sur[i]),这里的pre[i]表示此区间i点和它之前的的前缀的最大值,sur[ ...

  8. ZROI2018提高day4t1

    传送门 分析 一道贪心题,我们用两个优先队列分别维护卖出的物品的价格和买入但没有卖出的物品的价格,然后逐一考虑每一个物品.对于每一个物品如果他比卖出的物品中的最低个价格,则改将现在考虑的物品卖出,将之 ...

  9. ZROI2018提高day3t3

    传送门 分析 我们对于每一个可以匹配的字符都将其从栈中弹出,然后他的哈希值就是现在栈中的字符哈希一下.然后我们便可以求出对于哪些位置它们的哈希值是一样的,即它们的状态是一致的.而这些点可以求出它们的贡 ...

随机推荐

  1. 2018.7.19 AK22 续集

    话说上次坏机检查没有找到问题,后来我们联合软件工程师一起分析原因 ------------------------ 在线调试: MCU在内部晶振模式下:初始化正常,功能函数正常,切换到外部晶振12M后 ...

  2. PageRank算法原理及实现

    PageRank算法原理介绍 PageRank算法是google的网页排序算法,在<The Top Ten Algorithms in Data Mining>一书中第6章有介绍.大致原理 ...

  3. Centos下安装禅道

    1.下载禅道安装包:http://dl.cnezsoft.com/zentao/9.7/ZenTaoPMS.9.7.stable.zbox_64.tar.gz 2.将下载的压缩包解压到/opt目录下: ...

  4. SpringCloud微服务实战——第三章服务治理

    Spring Cloud Eureka 服务治理 是微服务架构中最核心最基本的模块.用于实现各个微服务实例的自动化注册与发现. 服务注册: 在服务治理框架中,都会构建一个注册中心,每个服务单元向注册中 ...

  5. linux 定时备份mysql

    定时备份:1.创建备份文件存放目录2.创建备份脚本backup.sh #!/bin/bash DBUser=db_backDBPasswd=passwordDBName=db_nameSERVER=l ...

  6. UIButton 不同状态图片来回切换

    做百度地图是否显示路况信息,用到两种状态的图片 第一种方法:用Bool进行标记 声明一个 Bool _isRoad; - (void)roadBtnAction:(UIButton *)sender ...

  7. Python学习笔记 - MySql的使用

    一.安装MySql模块 Python2.X pip install MySQLdb Python3.X pip install pymysql 二.数据库连接接口 由于Python统一了数据库连接的接 ...

  8. Oracle AWR,SQL_TRACE,10046,DBMS_PROFILER 等使用

    Oracle AWR,SQL_TRACE,10046,DBMS_PROFILER 等使用 1 AWR 工具的使用及优化 1 10g默认安装 select * from dba_hist_wr_cont ...

  9. c++ 图解快速排序算法

    第一.算法描述 快速排序由C. A. R. Hoare在1962年提出,该算法是目前实践中使用最频繁,实用高效的最好排序算法, 快速排序算法是采用分治思想的算法,算法分三个步骤 从数组中抽出一个元素作 ...

  10. java 多线程系列基础篇(七)之线程休眠

    1. sleep()介绍 sleep() 定义在Thread.java中.sleep() 的作用是让当前线程休眠,即当前线程会从“运行状态”进入到“休眠(阻塞)状态”.sleep()会指定休眠时间,线 ...