点此看题面

大致题意: 给你一个节点从\(1\sim n\)编号的树,让你从中选择\(k\)个节点并通过选择的边联通,且要使选择的边数最少,让你计算对于所有选择\(k\)个节点的情况最小选择边数的总和。

题解

这道题乍一看很麻烦:最短路径最小生成树\(LCA\)?通通都不用!!!

其实,这道题就是一道很简单的数学题。

如上图所示,对于某一条边\(w\),假设它的一边共有\(t\)个节点,则显然它的另一边共有\(n-t\)个节点。

对于一条边的贡献,我们可以这样理解:在多少种情况下,这条边的两边都有被选入\(k\)个点中的点,此时这个点就必须被选。

而对于这些点的分布,有以下三种情况:

这条边的两边都有点被选,这种情况的可能性就是我们要求的,但是难以直接计算。

所有被选中的点都在这条边的左面,由于这条边的左边共有\(t\)个点,因此这种情况的可能性为\(C_t^k\)。

所有被选中的点都在这条边的右面,由于这条边的右边共有\(n-t\)个点,因此这种情况的可能性为\(C_{n-t}^k\)。

由于总情况数为\(C_n^k\),所以,这条边的两边都有点被选的可能性就是\(C_n^k\) - \(C_t^k\) - \(C_{n-t}^k\)。

既然这样,我们可以直接枚举每一条边,计算出答案并累加即可。

代码

#include<bits/stdc++.h>
#define LL long long
#define N 100000
#define MOD 1000000007
using namespace std;
int n,k,ee=0,lnk[N+5],vis[N+5]={0};
struct edge
{
int to,nxt,val;
}e[2*N+5];
LL ans=0,fac[N+5]={0},inv[N+5]={0};
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) if(ch=='-') f=-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(int x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline void add(int x,int y)
{
e[++ee]=(edge){y,lnk[x],0},lnk[x]=ee;
}
inline LL quick_pow(LL x,LL y)//快速幂
{
LL res=1;
while(y)
{
if(y&1) (res*=x)%=MOD;
(x*=x)%=MOD,y>>=1;
}
return res;
}
inline void Init()//初始化
{
register int i;fac[1]=1;
for(i=2;i<=N+4;++i) fac[i]=(fac[i-1]*i)%MOD;//预处理阶乘
inv[N+4]=quick_pow(fac[N+4],MOD-2);
for(i=N+3;i>=0;--i) inv[i]=(inv[i+1]*(i+1))%MOD;//预处理逆元
}
inline LL C(LL x,LL y)//组合数
{
if(x<y) return 0;
if(!y) return 1;
return fac[x]*inv[y]%MOD*inv[x-y]%MOD;
}
inline int dfs(int x)
{
register int i;LL res=1;vis[x]=1;
for(i=lnk[x];i;i=e[i].nxt)
{
if(!vis[e[i].to])
{
LL t=dfs(e[i].to);
(ans+=C(n,k)%MOD-C(t,k)%MOD-C(n-t,k)%MOD+MOD)%=MOD;//核心计算公式
res+=t;
}
}
return res;//res表示该边某一侧的点数
}
int main()
{
register int i;int x,y;
for(read(n),read(k),i=1;i<n;++i)
read(x),read(y),add(x,y),add(y,x);
Init(),dfs(1);
return write((ans+MOD)%MOD),0;
}

【51nod1677】treecnt(树上数学题)的更多相关文章

  1. 【计数】51nod1677 treecnt

    要将答案看做是小问题的贡献和 Description 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k ...

  2. 【树形背包】bzoj4033: [HAOI2015]树上染色

    仔细思考后会发现和51nod1677 treecnt有异曲同工之妙 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 ...

  3. NOIP2018 - 暑期博客整理

    暑假写的一些博客复习一遍.顺便再写一遍或者以现在的角度补充一点东西. 盛暑七月 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士 比较经典的基环外向树dp.可以借鉴的 ...

  4. [洛谷U40581]树上统计treecnt

    [洛谷U40581]树上统计treecnt 题目大意: 给定一棵\(n(n\le10^5)\)个点的树. 定义\(Tree[l,r]\)表示为了使得\(l\sim r\)号点两两连通,最少需要选择的边 ...

  5. 树上统计treecnt(dsu on tree 并查集 正难则反)

    题目链接 dalao们怎么都写的线段树合并啊.. dsu跑的好慢. \(Description\) 给定一棵\(n(n\leq 10^5)\)个点的树. 定义\(Tree[L,R]\)表示为了使得\( ...

  6. Luogu P3177 [HAOI2015]树上染色

    一道有机结合了计数和贪心这一DP两大考点的神仙题,不得不说做法是很玄妙. 首先我们很容易想到DP,设\(f_{i,j}\)表示在以\(i\)为根节点的子树中选\(j\)个黑色节点的最大收益值. 然后我 ...

  7. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  8. BZOJ 3784: 树上的路径

    Description 问一棵树上前 \(k\) 大路径的边权. Sol 边分治. 非常感谢数据没有菊花图. 为了写写边分治试试然后就开了这道题. 边分治非常好想,选一条重边,分成两部分,然后分别求最 ...

  9. HDU 2376 树形dp|树上任意两点距离和的平均值

    原题:http://acm.hdu.edu.cn/showproblem.php?pid=2376 经典问题,求的是树上任意两点和的平均值. 这里我们不能枚举点,这样n^2的复杂度.我们可以枚举每一条 ...

随机推荐

  1. 洛谷P4121 [WC2005]双面棋盘(线段树套并查集)

    传送门 先膜一下大佬->这里 据说这题正解是LCT,然而感觉还是线段树套并查集的更容易理解 我们对于行与行之间用线段树维护,每一行内用并查集暴力枚举 每一行内用并查集暴力枚举连通块这个应该容易理 ...

  2. luoguP4921 情侣?给我烧了!

    luogu 考虑对于\(n\)对情侣,恰好\(k\)对是和谐的方案数是 \[ ans[n][k]=\binom{n}{k}A^k_n2^kg(n-k) \] \(g(n)\)为全部\(n\)对情侣不和 ...

  3. 关于unique去重

    嗯.... unique这个东西也是一个冷门知识..... 但是在有时候它还是比较好用的东西... 下面就在详细代码中看unique是如何实际应用的....它主要是用于数组去重 #include< ...

  4. Hadoop_配置Hadoop开发环境(Eclipse)

    通常我们可以用Eclipse作为Hadoop程序的开发平台. 1)  下载Eclipse 下载地址:http://www.eclipse.org/downloads/ 根据操作系统类型,选择合适的版本 ...

  5. linux 向文本指定位置写入内容

    sed -i "37 r a.txt" test.txt ====== 向test.txt 的第37行后,也就是38行后写入a.txt的内容 sed -i "38i aa ...

  6. c++概念字符串操作 (转)

    本文转自:http://www.jb51.net/article/37410.htm 一.char_traits 字符特征类 1)意义:包装特定串元素的通用行为界面,以便容器实现时依据特征信息而执行特 ...

  7. Sql server 数据库的备份和还原数据库提示“ 加载的介质已格式化为支持 1 个介质簇,但根据指定的备份设备,应支持 2 个介质簇”

     数据库备份和还原总结 在 "M:\2017-Pro\company\other\databak_2014-10\anquanbaowei_db_201704300200.BAK" ...

  8. devExpress GridControl gridView笔记

    gridView1.Appearance.EvenRow.BackColor = Color.FromArgb(, , , ); gridView1.Appearance.OddRow.BackCol ...

  9. Soft skill

    不要害怕让别人看到自己的无知 作为高级程序员的一个好处是,当别人问一些我不懂的问题时,我可以很淡然地告诉他们: 这个东西我也不懂,因为以前没有遇到过,不过我可以看一下,然后再告诉你. 当我还是一个初级 ...

  10. 使用.NET配置文件appSettings元素的File属性

    今天又一次郁闷了,看Orchard真实学到不少东西哇! Web.Config里面appSettings节点原来可以直接引用一个文件,以前还老想着微软真二,配置节点多了肿么办? 本质上来说,每一个可执行 ...