1.    管道(了解)

#创建管道的类:
Pipe([duplex]):在进程之间创建一条管道,并返回元组(conn1,conn2),其中conn1,conn2表示管道两端的连接对象,强调一点:必须在产生Process对象之前产生管道
#参数介绍:
dumplex:默认管道是全双工的,如果将duplex射成False,conn1只能用于接收,conn2只能用于发送。
#主要方法:
conn1.recv():接收conn2.send(obj)发送的对象。如果没有消息可接收,recv方法会一直阻塞。如果连接的另外一端已经关闭,那么recv方法会抛出EOFError。
conn1.send(obj):通过连接发送对象。obj是与序列化兼容的任意对象
#其他方法:
conn1.close():关闭连接。如果conn1被垃圾回收,将自动调用此方法
conn1.fileno():返回连接使用的整数文件描述符
conn1.poll([timeout]):如果连接上的数据可用,返回True。timeout指定等待的最长时限。如果省略此参数,方法将立即返回结果。如果将timeout射成None,操作将无限期地等待数据到达。 conn1.recv_bytes([maxlength]):接收c.send_bytes()方法发送的一条完整的字节消息。maxlength指定要接收的最大字节数。如果进入的消息,超过了这个最大值,将引发IOError异常,并且在连接上无法进行进一步读取。如果连接的另外一端已经关闭,再也不存在任何数据,将引发EOFError异常。
conn.send_bytes(buffer [, offset [, size]]):通过连接发送字节数据缓冲区,buffer是支持缓冲区接口的任意对象,offset是缓冲区中的字节偏移量,而size是要发送字节数。结果数据以单条消息的形式发出,然后调用c.recv_bytes()函数进行接收 conn1.recv_bytes_into(buffer [, offset]):接收一条完整的字节消息,并把它保存在buffer对象中,该对象支持可写入的缓冲区接口(即bytearray对象或类似的对象)。offset指定缓冲区中放置消息处的字节位移。返回值是收到的字节数。如果消息长度大于可用的缓冲区空间,将引发BufferTooShort异常。 介绍
from multiprocessing import Process, Pipe

def f(conn):
conn.send("Hello The_Third_Wave")
conn.close() if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv())
p.join()

管道小窥

应该特别注意管道端点的正确管理问题。如果是生产者或消费者中都没有使用管道的某个端点,就应将它关闭

这也说明了为何在生产者中关闭了管道的输出端,在消费者中关闭管道的输入端。如果忘记执行这些步骤,

程序可能在消费者中的recv()操作上挂起。管道是由操作系统进行引用计数的,必须在所有进程中关闭管道后才能生成EOFError异常。

因此,在生产者中关闭管道不会有任何效果,除非消费者也关闭了相同的管道端点。

from multiprocessing import Process,Pipe

def func(x):
msg=x.recv()
print(msg) if __name__ == '__main__':
conn1,conn2=Pipe() p=Process(target=func,args=(conn1,))
p.start()
# conn2.close() #在发送之前关闭管道,会EOFError
conn2.send("nidaye")
conn2.close()
print("主进程结束")

EOF错误

from multiprocessing import Process, Pipe

def f(parent_conn,child_conn):
#parent_conn.close() #不写close将不会引发EOFError
while True:
try:
print(child_conn.recv())
except EOFError:
child_conn.close() if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(parent_conn,child_conn,))
p.start()
child_conn.close()
parent_conn.send('hello')
parent_conn.close()
p.join()

引发EOF错误

from multiprocessing import Process,Pipe

def consumer(p,name):
produce, consume=p
produce.close()
while True:
try:
baozi=consume.recv()
print('%s 收到包子:%s' %(name,baozi))
except EOFError:
break def producer(seq,p):
produce, consume=p
consume.close()
for i in seq:
produce.send(i) if __name__ == '__main__':
produce,consume=Pipe() c1=Process(target=consumer,args=((produce,consume),'c1'))
c1.start() seq=(i for i in range(10))
producer(seq,(produce,consume)) produce.close()
consume.close() c1.join()
print('主进程') pipe实现生产者消费者模型

Pipe实现生产者消费者模型

from multiprocessing import Process,Pipe,Lock

def consumer(p,name,lock):
produce, consume=p
produce.close()
while True:
lock.acquire()
baozi=consume.recv()
lock.release()
if baozi:
print('%s 收到包子:%s' %(name,baozi))
else:
consume.close()
break def producer(p,n):
produce, consume=p
consume.close()
for i in range(n):
produce.send(i)
produce.send(None)
produce.send(None)
produce.close() if __name__ == '__main__':
produce,consume=Pipe()
lock = Lock()
c1=Process(target=consumer,args=((produce,consume),'c1',lock))
c2=Process(target=consumer,args=((produce,consume),'c2',lock))
p1=Process(target=producer,args=((produce,consume),10))
c1.start()
c2.start()
p1.start() produce.close()
consume.close() c1.join()
c2.join()
p1.join()
print('主进程') 多个消费之之间的竞争问题带来的数据不安全问题

多个消费者引发的数据不安全

2.    进程之间的数据共享

展望未来,基于消息传递的并发编程是大势所趋

即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。

这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中。

但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。

以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

from multiprocessing import Process,Manager,Lock

def func(d,l):
with l:#不加锁而操作共享的数据,肯定会出现数据错乱
d["num"]-=1 if __name__ == '__main__':
m=Manager()
l=Lock()
dic=m.dict({"num":100}) p_list=[]
for i in range(100):
p=Process(target=func,args=(dic,l,))
p_list.append(p)
p.start() [pp.join() for pp in p_list] print(">>>>>",dic["num"])

例子

3.    进程池

为什么要有进程池?进程池的概念。

在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?

在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

关于multiprocess.Pool模块

1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
3 initargs:是要传给initializer的参数组

概念介绍

主要方法

p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
'''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()''' p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
'''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。''' p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成 P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用 主要方法

方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果远程操作中引发了异常,它将在调用此方法时再次被引发。
obj.ready():如果调用完成,返回True
obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
obj.wait([timeout]):等待结果变为可用。
obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数 其他方法(了解)

其他方法

进程池和多进程效率对比
from multiprocessing import Pool,Process
import time def func(i):
num=0
for j in range(5):
num+=i if __name__ == '__main__':
pool=Pool(4) # 不使用进程池
p_list=[]
startime=(time.time())
for i in range(1000):
p=Process(target=func,args=(i,))
p_list.append(p)
p.start()
[pp.join() for pp in p_list]
endtime=(time.time())
print(endtime-startime) stime=time.time()
pool.map(func,range(1000))
etime=time.time()
print(etime-stime)

进程池和多进程效率对比

同步和异步
import os,time
from multiprocessing import Pool def work(n):
print('%s run' %os.getpid())
time.sleep(3)
return n**2 if __name__ == '__main__':
p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
res_l=[]
for i in range(10):
res=p.apply(work,args=(i,)) # 同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞
# 但不管该任务是否存在阻塞,同步调用都会在原地等着
print(res_l) 进程池的同步调用

进程池的同步调用

import os
import time
import random
from multiprocessing import Pool def work(n):
print('%s run' %os.getpid())
time.sleep(random.random())
return n**2 if __name__ == '__main__':
p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
res_l=[]
for i in range(10):
res=p.apply_async(work,args=(i,)) # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
# 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
# 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
# 而是执行完一个就释放一个进程,这个进程就去接收新的任务。
res_l.append(res) # 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果
# 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
p.close()
p.join()
for res in res_l:
print(res.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get 进程池的异步调用

进程池的异步作用

首先,我们为进程注入func,有两种方式:apply_async表示异步,就是子进程接收到请求之后就各自去执行了,而apply表示同步,子进程们将一个一个的执行,后一个子进程的执行永远以前一个子进程的结束为信号,开始执行。还是吃饭的例子。。。异步就是当我通知子进程要去吃饭的时候,他们就同时去吃饭了,同步就是他们必须一个一个的去,前一个没回来,后一个就不能去。

  close方法:说关闭进程池,至此,进程池中不在有进程可以接受任务。

  terminate和join是一对方法,表示的内容截然相反,执行terminate是结束当前进程池中的所有进程,不管值没执行完。join方法是阻塞主进程,等待子进程执行完毕,再继续执行主进程。需要注意的是:这两个方法都必须在close方法之后执行。当然我们也可以不执行这两个方法,那么子进程和主进程就各自执行各自的,无论执行到哪里,子进程会随着主进程的结束而结束。。。

进程池版socket聊天

#Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count())
#开启6个客户端,会发现2个客户端处于等待状态
#在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程
from socket import *
from multiprocessing import Pool
import os server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5) def talk(conn):
print('进程pid: %s' %os.getpid())
while True:
try:
msg=conn.recv(1024)
if not msg:break
conn.send(msg.upper())
except Exception:
break if __name__ == '__main__':
p=Pool(4)
while True:
conn,*_=server.accept()
p.apply_async(talk,args=(conn,))
# p.apply(talk,args=(conn,client_addr)) #同步的话,则同一时间只有一个客户端能访问 server:进程池版socket并发聊天

服务端

from socket import *

client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if not msg:continue client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8')) client

客户端

发现:并发开启多个客户端,服务端同一时间只有4个不同的pid,只能结束一个客户端,另外一个客户端才会进来.

回调函数
需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数

我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。
from multiprocessing import Pool
import requests
import json
import os def get_page(url):
print('<进程%s> get %s' %(os.getpid(),url))
respone=requests.get(url)
if respone.status_code == 200:
return {'url':url,'text':respone.text} def pasrse_page(res):
print('<进程%s> parse %s' %(os.getpid(),res['url']))
parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
with open('db.txt','a') as f:
f.write(parse_res) if __name__ == '__main__':
urls=[
'https://www.baidu.com',
'https://www.python.org',
'https://www.openstack.org',
'https://help.github.com/',
'http://www.sina.com.cn/'
] p=Pool(3)
res_l=[]
for url in urls:
res=p.apply_async(get_page,args=(url,),callback=pasrse_page)
res_l.append(res) p.close()
p.join()
print([res.get() for res in res_l]) #拿到的是get_page的结果,其实完全没必要拿该结果,该结果已经传给回调函数处理了 '''
打印结果:
<进程3388> get https://www.baidu.com
<进程3389> get https://www.python.org
<进程3390> get https://www.openstack.org
<进程3388> get https://help.github.com/
<进程3387> parse https://www.baidu.com
<进程3389> get http://www.sina.com.cn/
<进程3387> parse https://www.python.org
<进程3387> parse https://help.github.com/
<进程3387> parse http://www.sina.com.cn/
<进程3387> parse https://www.openstack.org
[{'url': 'https://www.baidu.com', 'text': '<!DOCTYPE html>\r\n...',...}]
'''

使用多进程请求多个url来减少网络等待浪费的时间

from multiprocessing import Pool
import time,random,os def work(n):
time.sleep(1)
return n**2
if __name__ == '__main__':
p=Pool() res_l=[]
for i in range(10):
res=p.apply_async(work,args=(i,))
res_l.append(res) p.close()
p.join() #等待进程池中所有进程执行完毕 nums=[]
for res in res_l:
nums.append(res.get()) #拿到所有结果
print(nums) #主进程拿到所有的处理结果,可以在主进程中进行统一进行处理

无需回调函数

day31 管道 进程池 数据共享的更多相关文章

  1. day32 信号量 事件 管道 进程池

    今日主要内容: 1.管道(Pipe) 数据接收一次就没有了 2.事件(Event) 3.基于事件的进程通信 4.信号量(Semaphore) 5. 进程池(重点) 6.进程池的同步方法和异步方法 7. ...

  2. Manager模块 队列 管道 进程池

    Manager模块 作用:  多进程共享变量. Manager的字典类型: 如果value是简单类型,比如int,可以直接赋值给共享变量,并可以后续直接修改 如果value是复杂类型 ,比如list, ...

  3. python 管道、数据共享、进程池

    一.管道(Pipe)(了解) (详情参考:https://www.cnblogs.com/clschao/articles/9629392.html) 进程间通信(IPC)方式二:管道(不推荐使用,了 ...

  4. 进程同步控制(锁,信号量,事件), 进程通讯(队列和管道,生产者消费者模型) 数据共享(进程池和mutiprocess.Pool模块)

    参考博客 https://www.cnblogs.com/xiao987334176/p/9025072.html#autoid-1-1-0 进程同步(multiprocess.Lock.Semaph ...

  5. Python_生产者消费者模型、管道、数据共享、进程池

    1.生产者消费者模型 生产者 —— 生产数据的人 消费者 —— 消费数据的人 生产者消费者模型:供销数据不平衡的现象. import time import random from multiproc ...

  6. python 全栈开发,Day40(进程间通信(队列和管道),进程间的数据共享Manager,进程池Pool)

    昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acqui ...

  7. python全栈开发,Day40(进程间通信(队列和管道),进程间的数据共享Manager,进程池Pool)

    昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acqui ...

  8. python摸爬滚打之day032 管道 数据共享 进程池

    1.进程池 当有成千上万个任务需要被执行的时候,有了进程池我们就不必去创建大量的进程. 首先,创建进程需要消耗时间,销毁进程(空间,变量,文件信息等等的内容)也需要消耗时间, 第二即便开启了成千上万的 ...

  9. python 管道 事件(Event) 信号量 进程池(map/同步/异步)回调函数

    ####################总结######################## 管道:是进程间通信的第二种方式,但是不推荐使用,因为管道会导致数据不安全的情况出现 事件:当我运行主进程的 ...

随机推荐

  1. Android ScrollView 内部控件 layout_margin失效的解决方法

    在<ScrollView> 的<LinearLayout  >属性里面加入android:layout_gravity="top" <LinearLa ...

  2. ThinkPHP的URL模式

    ThinkPHP的URL模式有四种,默认是PATHINFO模式,其他三种分别为:普通模式.REWRITE和兼容模式. 一.PATHINFO模式 浏览器输入格式为: http://localhost/d ...

  3. JavaScipt——Windows.document对象

    四中选择器:class ,id , name , 标签 通过选择器获取对象: document.getElementById('');  -- id选择器 ...................... ...

  4. TortoiseSVN客户端安装遇到的问题汇总

    在windows server 2003版本上安装32位SVN客户,提示以下错误 1:无法通过windows installer服务安装此安装程序包” 这时需要安装更新的windows install ...

  5. php学习笔记-php中的比较运算符

    其中比较难懂的是==和=== ==是只比较两个变量的值,不仅仅是用于比较两个数是否相等,还可以比较int和string,不过会先转化string为int类型再比较,值相等则返回true,值不相等则返回 ...

  6. 有趣的setTimeout

    今天在回顾JavaScript进阶用法的时候,发现一个有趣的问题,话不多说,先上代码: for(var j=0;j<10;j++){ setTimeout(function(){console. ...

  7. 读paper笔记[Learning to rank]

    读paper笔记[Learning to rank] by Jiawang 选读paper: [1] Ranking by calibrated AdaBoost, R. Busa-Fekete, B ...

  8. WCF寄宿控制台.WindowsService.WinFrom.WebAPI寄宿控制台和windows服务

    先建立wcf类库.会默认生成一些试用代码.如下: public class Service1 { public string GetData(int value) { return string.Fo ...

  9. MongoDB 分片2

    mongodb 在windows下面进行分片 mongodb 更新很快,在做分片的时候,查找了不少文章,但是很多已经过时了.现在把我搭建的过程及命令分享给大家.我用的是最新版本windows版3.4. ...

  10. 在ubuntu 14.04 编译android 2.3.1 错误解决办法

    首先必须降低gcc版本: sudo apt-get install gcc-4.4sudo apt-get install g++-4.4sudo rm -rf /usr/bin/gcc /usr/b ...