浅谈双流水线调度问题以及Jhonson算法
引入:何为流水线问题
有\(n\)个任务,对于每个任务有\(m\)道工序,每个任务的\(m\)道工序必须在不同的m台机器上依次完成才算把这个任务完成,在前\(i-1\)道工序完成后才能去完成第\(i\)道工序。对于每一个任务的每一道工序在每一台机器上需要的时间都是不同的,求最短完成所有任务的时间,也就是最后一个任务的最后一道工序的完成时间。
流水线问题分为可抢先调度和非抢先调度。在现实生活中,某些时候某个任务会因为突发情况而获得较高的优先级,那么我们就会停下正在做的任务,直接开始这个优先级较高的问题,这就是抢先调度。
由于抢先调度和多流水线的情况比较复杂,所以我们在比赛中很难碰见碰见了就意味着你有更多的时间去写剩下的两道题多吼哇,所以我们只研究非抢先调度的双流水线调度问题。
双流水线问题所具有的适合动态规划的性质
假设第一个机器为\(M1\),第二个机器为\(M2\),第\(i\)个任务在第一个机器上所需的时间是\(a_i\),在第二个机器上所需的时间是\(b_i\)。肯定存在某个最优的策略使得\(M2\)接受的任务的先后顺序和\(M1\)接受的任务顺序一模一样。
在最优策略下,\(M1\)肯定是没有空闲时间的,而\(M2\)只有两种状态,一种是空闲的,一种是任务积压着。不管对于那种状态,\(M2\)接受任务的顺序跟\(M1\)保持一致显然是最优的,因为这样会使\(M2\)的空闲时间最少,也就会使最后一个任务的第二道工序更快完成。
我们令\(T\)(\(s\),\(t\))表示当\(M1\)开始处理任务集合\(s\)时,\(M2\)还需要时间\(t\)才能投入使用,最后完成任务集合\(s\)的最快时间。那么对于非抢先调度问题的答案就是\(T\)(\(N\),\(0\))。
假设最优策略选择第\(i\)个任务最先做,显然答案就是\(a_i\)+\(T\)(\(N-\){\(i\)},\(b_i\))。
再推广一点,对于每个\(T\)(\(s\),\(t\)),都满足\(T\)(\(s\),\(t\))=\(min\){\(a_i\)+\(T\)(\(s-\){\(i\)},\(b_i+max\)(\(t-a_i\),0))}。意思就是在\(M2\)还需要\(t\)时间才能投入使用来执行任务集合\(s\)内的任务时,\(M1\)优先执行任务集合\(s\)里的任务,并且选择第\(i\)号任务为集合\(s\)里第一个被执行的任务,所以在执行\(a_i\)时,\(M2\)的等待时间\(t\)自然也会减少,但是就算\(M2\)上的任务清空了也只能等着\(M1\)这边的任务第一道工序加工完才能再次工作,所以后面的等待时间是\(b_i+max\)(\(t-a_i\),\(0\)),而剩下的任务集合就是\(s-\){\(i\)}。
显然这个动态规划是正确的,但是由于任务的数量过多和任务耗时较长,这个方法并不能很好的解决双流水线非抢先调度问题。
算法进化:\(Jhonson\)登场
假设在最优策略下,对于任务集合\(s\),在\(T\)(\(s\),\(t\))的情况下,第一个在\(M1\)上执行的是\(i\)号任务,第二个是\(j\)号。那么\(T\)(\(s\),\(t\))就可以转化成\(a_i+T\)(\(s-\){\(i\)},\(b_i+max\) (\(t-a_i\),\(0\))),再转化成\(a_i+a_j+T\)(\(s-\){i,j},\(t_{ij}\))。
\(t_{ij}=b_j+max\)(\(b_i+max\)(\(t-a_i\),\(0\))\(-a_j\),\(0\)))
在最外层的\(max\)里提出一个\(b_i-a_j\):
\(t_{ij}=b_j+b_i-a_j+max\)(\(max\)(\(t-a_i\),\(0\)),\(a_j-b_i\)))
\(t_{ij}=b_j+b_i-a_j+max\)(\(t-a_i\),\(0\),\(a_j-b_i\))
再提一个\(-a_i\)出来:
\(t_{ij}=b_j+b_i-a_i-a_j+max\)(\(t\),\(a_i\),\(a_i+a_j-b_i\))
那么在最优策略下,先\(i\)后\(j\)和先\(j\)后\(i\)的区别就只能在那个\(max\)里体现出来了。而\(max\)也刚好影响着\(M2\)的空闲时间,也就是最后答案。那么我们把先\(i\)后\(j\)和先\(j\)后\(i\)的\(max\)分别写出来,他们满足下面这个关系:
\[max(t,a_i,a_i+a_j-b_i)\leqslant max(t,a_j,a_i+a_j-b_j)\]
先假设\(t\)为一个极小值,把它的影响抹去,我们化简一下:
\[max(a_i,a_i+a_j-b_i)\leqslant max(a_j,a_i+a_j-b_j)\]
\[a_i+a_j+max(-a_j,-b_i)\leqslant a_i+a_j+max(-a_i,-b_j)\]
见证奇迹的时刻到了!!我们再次化简!
\[max(-a_j,-b_i)\leqslant max(-a_i,-b_j)\]
等价于:
\[min(a_i,b_j)\leqslant min(a_j,b_i)\]
可是,也许最开始\(max\)里的\(t\)消失得不明不白,这个时候我们反着推回去,只需要满足\(min(a_i,b_j)\leqslant min(a_j,b_i)\)的话,对于任意\(t\)也就必然满足\(max(t,a_i,a_i+a_j-b_i)\leqslant max(t,a_j,a_i+a_j-b_j)\)了。所以只需要满足\(min(a_i,b_j)\leqslant min(a_j,b_i)\)就是最优的调度决策。
于是乎,传说中的\(Jhonson\)表达式就出炉了。对于任何双流水线非抢先调度问题的最优解,任意相邻的\(i,j\)都满足\(Jhonson\)表达式,因为任意相邻的\(i,j\)都有这个比较法则和小于号的传递性,所以任意不相邻的\(i,j(i<j)\),也都满足\(Jhonson\)表达式。我们只需要按照这个式子写一个\(cmp\)函数然后\(sort\)所有的任务,就可以在\(nlogn\)的时间复杂度内解决双流水线调度问题了。
浅谈双流水线调度问题以及Jhonson算法的更多相关文章
- 浅谈DFS,BFS,IDFS,A*等算法
搜索是编程的基础,是必须掌握的技能.--王主任 搜索分为盲目搜索和启发搜索 下面列举OI常用的盲目搜索: 1.dijkstra 2.SPFA 3.bfs 4.dfs 5.双向bfs 6.迭代加深搜索( ...
- MMORPG战斗系统随笔(二)、浅谈场寻路Flow Field PathFinding算法
转载请标明出处http://www.cnblogs.com/zblade/ 今天给大家带来一篇游戏中寻路算法的博客.去年,我加入一款RTS的游戏项目,负责开发其中的战斗系统,战斗系统的相关知识,属于游 ...
- 【转】浅谈对主成分分析(PCA)算法的理解
以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA ...
- 浅谈URLEncoder编码算法
一.为什么要用URLEncoder 客户端在进行网页请求的时候,网址中可能会包含非ASCII码形式的内容,比如中文. 而直接把中文放到网址中请求是不允许的,所以需要用URLEncoder编码地址, 将 ...
- 浅谈Hex编码算法
一.什么是Hex 将每一个字节表示的十六进制表示的内容,用字符串来显示. 二.作用 将不可见的,复杂的字节数组数据,转换为可显示的字符串数据 类似于Base64编码算法 区别:Base64将三个字节转 ...
- 浅谈Base64编码算法
一.什么是编码解码 编码:利用特定的算法,对原始内容进行处理,生成运算后的内容,形成另一种数据的表现形式,可以根据算法,再还原回来,这种操作称之为编码. 解码:利用编码使用的算法的逆运算,对经过编码的 ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- 浅谈分词算法(5)基于字的分词方法(bi-LSTM)
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...
- 浅谈分词算法(4)基于字的分词方法(CRF)
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 ...
随机推荐
- javascript修改图片链接地址
<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head> < ...
- 线段覆盖 2(序列DP)
Code vs 3027 线段覆盖 2 题目描述 Description 数轴上有n条线段,线段的两端都是整数坐标,坐标范围在0~1000000,每条线段有一个价值,请从n条线段中挑出若干条线段, ...
- 【python】-- 协程介绍及基本示例、协程遇到IO操作自动切换、协程(gevent)并发爬网页
协程介绍及基本示例 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是协程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其他 ...
- ABAP面试经历【转http://blog.csdn.net/tsj19881202/article/details/8792742】
本周三面试了一次HP的globe部门,整个过程自己感觉特别糟糕.总结了一下经验, 1.不能把自己平时做的东西,很好的用语言描述出来 2.技术点其实都会,但是不了解对方问题的意思,所以没能很好的回答对方 ...
- 数据分析R语言(1)
无意中发现网上的一个数据分析R应用教程,看了几集感觉还不错,本文做一个学习笔记(知识点来源:视频内容+R实战+自己的理解),视频详细的信息请参考http://www.itao521.com/cours ...
- R语言数据管理(四):数据导出
与read.*函数对应,导出函数为write.*函数. 比较常见的为write.csv和write.table. 一般格式: setwd("D:\\") write.table(y ...
- IOS UI Frame 相对位置调整 与优化方法 Height Width X Y 调整
不使用xib ,纯代码开发的过程中,动态UI 需要改对象的大小位置 反复使用CGRectMake 去 setFrame 非常低效耗时,而且 牵一发动全身. 以下整理出几个方法,方便动态布局 1.s ...
- 第二天----列表、深浅拷贝、元组、字符串、算数运算、字典、while
列表 列表是最常用的Python数据类型,它可以作为一个方括号内的逗号分隔值出现. 基本操作: 索引切片追加删除长度切片循环包含 创建.查看列表: 列表中的数字不要加引号,列表的索引从0开始: lis ...
- 吴恩达机器学习笔记(四) —— BP神经网络
主要内容: 一.模型简介 二.一些变量所代表的含义 三.代价函数 四.Forward Propagation 五.Back Propagation 六.算法流程 待解决问题: 视频中通过指出:当特征变 ...
- Spring Cloud之Hystrix服务保护框架
服务保护利器 微服务高可用技术 大型复杂的分布式系统中,高可用相关的技术架构非常重要. 高可用架构非常重要的一个环节,就是如何将分布式系统中的各个服务打造成高可用的服务,从而足以应对分布式系统环境中的 ...