题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1301

好题!看了TJ才会。

因为是不可重集合,所以当然有前 i 个表示A和B都考虑的前 i 个,新加一个讨论放A、放B、不放。

A<B在异或上看就是有一位,它前面的A和B都一样,该位A是0、B是1。该位可以枚举。然后就能dp了。

注意边界细节……和标程对拍真愉快……

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=,mod=1e9+;
int n,m,mi,mj,lm,dp[][M][],ans,bin[];
int calc(int a)
{
int ret=; while(a) a>>=,ret++; return ret;
}
void ad(int &x,int y)
{
x=(x+y>=mod?x+y-mod:x+y);
}
int main()
{
scanf("%d%d",&n,&m);
mi=max(n,m); lm=calc(m); int tmp=calc(mi);
bin[]=; for(int i=;i<=tmp;i++) bin[i]=(bin[i-]<<);//tmp not lm!!!
bin[tmp+]=(bin[tmp]<<);
mj=bin[tmp+]-;
for(int t=;t<=lm;t++)
{
memset(dp[],,sizeof dp[]);///not dp[0] if mj isn't gu ding
dp[][][]=;
// mj=1;
for(int i=,u,v;i<=mi;i++)
{
u=(i&);v=!u;
// if(i>=bin[mj])mj++;
// for(int j=0;j<=bin[mj];j++)
for(int j=;j<=mj;j++)
{
dp[u][j][]=dp[v][j][];
dp[u][j][]=dp[v][j][];
if(i<=n)//A
{
ad(dp[u][j][],dp[v][j^i][]);
ad(dp[u][j][],dp[v][j^i][]);
}
if(i<=m)//B
{
bool d=(i&bin[t]);
ad(dp[u][j][],dp[v][j^i][^d]);
ad(dp[u][j][],dp[v][j^i][^d]);
}
}
}
int d=(mi&);// mi not n!!!
for(int i=bin[t];i<bin[t+];i++) ad(ans,dp[d][i][]);
}
printf("%d\n",ans);
return ;
}

51nod 1301 集合异或和——异或dp的更多相关文章

  1. 51Nod 1301 集合异或和 —— 异或DP

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1301 参考博客:https://blog.csdn.net/qq_ ...

  2. 51nod 1301 集合异或和(DP)

    因为当\(A<B\)时,会存在在二进制下的一位,满足这一位B的这一位是\(1\),\(A\)的这一位是\(0\). 我们枚举最大的这一位.设为\(x\)吧. 设计状态.\(dp[i][j][1/ ...

  3. [51nod] 1301 集合异或和

    考虑不限制xor{Y}>xor{X} 考虑n=m的情况,每个数i∈[1,n]可以被分配到X集合或Y集合,或不分配 设f[S]表示{X} xor {Y} == S的方案数 有f[S]+=2*f[S ...

  4. [51Nod 1301] 集合异或和 (dp)

    传送门 Solution 一道比较好的dp题 想了半天组合数QAQ 首先要知道的是 A<B一定是B有一位是1且A的这位是0且前面都相等 那么肯定是要枚举这一位在哪里然后求出方案数 方案数考虑类似 ...

  5. bzoj 4017 子序列和的异或以及异或的和

    位运算很好的一个性质是可以单独每一位考虑..... 题解请看:http://blog.csdn.net/skywalkert/article/details/45401245 对于异或的和,先枚举位, ...

  6. 51Nod 1352 集合计数(扩展欧几里德)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1352 题目大意: 给出N个固定集合{1,N},{2,N-1} ...

  7. [BZOJ3261] 最大异或和 (异或前缀和,可持久化Trie)

    Description 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Q l r x:询问操作, ...

  8. 异或序列 [set优化DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 有一个长度为 \(n\)的自然数序列 \(a\),要求将这个序列分成至少 \(m\) 个连续子段 每个子段的价值为该子段的所有数 ...

  9. 51nod 1622 集合对[算法马拉松19 C]

    题目链接:https://www.51nod.com/contest/problem.html#!problemId=1622 第一次参加算法马拉松,我就是去看大神们疯狂秒题,然后感受绝望的orz.. ...

随机推荐

  1. vue路由vue-route

    首先先引入插件 <script src="Vue.js"></script> //vue.js在前面 <script src="vue-ro ...

  2. IntelliJ IDEA集成JProfiler,入门教程

    说明: JProfiler是用于分析J2EE软件性能瓶颈并能准确定位到Java类或者方法有效解决性能问题的主流工具,它通常需要与性能测试工具如:LoadRunner配合使用,因为往往只有当系统处于压力 ...

  3. 1.设计模式-------Iterator

    本文主要是参考<图解设计模式>写的读书笔记: 开发中我用到遍历集合时候,无非我常用的就是简单的for循环,foreach,iterator 这三种方式进行遍历! 当然这三种的效率: 学习I ...

  4. Convex optimization 凸优化

    zh.wikipedia.org/wiki/凸優化 以下问题都是凸优化问题,或可以通过改变变量而转化为凸优化问题:[5] 最小二乘 线性规划 线性约束的二次规划 半正定规划 Convex functi ...

  5. CF451E Devu and Flowers(容斥)

    CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...

  6. PAT 1057. 数零壹(20)

    给定一串长度不超过105的字符串,本题要求你将其中所有英文字母的序号(字母a-z对应序号1-26,不分大小写)相加,得到整数N,然后再分析一下N的二进制表示中有多少0.多少1.例如给定字符串“PAT ...

  7. JDBC【菜鸟学JAVA】

    1:首先下载sqljdbc.jar,然后配置ClassPath,然后再在工程文件中把这个(sqljdbc.jar)架包引用上,就可以开始JAVA操作之旅了 打开Eclipse,“文件”→“新建”→“项 ...

  8. 小程序网络请求arraybuffer 转为base64

    wx.request({ url: result.tempFilePath, method: 'GET', responseType: 'arraybuffer', success: function ...

  9. 基于事件驱动的前端通信框架(封装socket.io)

    socket.io的使用可以很轻松的实现websockets,兼容所有浏览器,提供实时的用户体验,并且为程序员提供客户端与服务端一致的编程体验.但是在使用socket.io的过程中,由于业务需求需要同 ...

  10. 通过设置PHPSESSID保存到cookie实现免登录

    $cookieParams = session_get_cookie_params(); session_set_cookie_params( 3600,// 设置sessionID在cookie中保 ...