Nasa, being the most talented programmer of his time, can’t think things to be so simple. Recently all his neighbors have decided to connect themselves over a network (actually all of them want to share a broadband internet connection :-)). But he wants to minimize the total cost of cable required as he is a bit fastidious about the expenditure of the project. For some unknown reasons, he also wants a second way left. I mean, he wants to know the second best cost (if there is any which may be same as the best cost) for the project. I am sure, he is capable of solving the problem. But he is very busy with his private affairs(?) and he will remain so. So, it is your turn to prove yourself a good programmer. Take the challenge (if you are brave enough)...

Input:

Input starts with an integer t ≤ 1000 which denotes the number of test cases to handle. Then follows t datasets where every dataset starts with a pair of integers v (1 ≤ v ≤ 100) and e (0 ≤ e ≤ 200). v denotes the number of neighbors and e denotes the number of allowed direct connections among them. The following e lines contain the description of the allowed direct connections where each line is of the form ‘start end cost’, where start and end are the two ends of the connection and cost is the cost for the connection. All connections are bi-directional and there may be multiple connections between two ends.

Output:

There may be three cases in the output

1. No way to complete the task,

2. There is only one way to complete the task,

3. There are more than one way.

   Output ‘No way’ for the first case, ‘No second way’ for the second case and an integer c for the third case where c is the second best cost. Output for a case should start in a new line.

Sample Input:

4

5 4

1 2 5

3 2 5

4 2 5

5 4 5

5 3

1 2 5

3 2 5

5 4 5

5 5

1 2 5

3 2 5

4 2 5

5 4 5

4 5 6

1 0

Sample Output:


Case #1 : No second way

Case #2 : No way

Case #3 : 21

Case #4 : No second way

题目大意:给你n个顶点,m条边。如果图是不连通的,输出No way,如果没有次小生成树,输出No second way,如果有次小生成树,输出次小生成树的值。有重边。

解题思路:对于有重边的情况,我们可以用kruskal做,枚举删除最小生成树上的边,进行n-1次枚举,更新出次小生成树。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
using namespace std;
const int maxn = 110;
const int INF = 0x3f3f3f3f;
struct Edge{
int from,to,dist;
}edges[maxn*maxn];
struct Set{
int pa,rela;
}sets[maxn];
int store[maxn];
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
void init(int n){
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
}
int Find(int x){
if(x == sets[x].pa){
return x;
}
int tmp = sets[x].pa;
sets[x].pa = Find(tmp);
return sets[x].pa;
}
int num =0;
int Kruskal(int n,int m){
init(n);
int rootx,rooty,x,y;
int retsum = 0;
num = 0;
for(int i = 0; i < m; i++){
Edge & e = edges[i];
x = e.from, y = e.to;
rootx = Find(x);
rooty = Find(y);
if(rootx != rooty){
store[num++] = i;
retsum += edges[i].dist;
sets[rooty].pa = rootx;
}
}
if(num < n-1){
return -1;
}else{
return retsum;
}
}
int SecKruskal(int n,int m,int mark){
init(n);
int rootx,rooty,x,y;
int retsum = 0, cnt = 0;
for(int i = 0; i < m; i++){
if(mark == i) continue;
Edge & e = edges[i];
x = e.from, y = e.to;
rootx = Find(x);
rooty = Find(y);
if(rootx != rooty){
cnt++;
retsum += edges[i].dist;
sets[rooty].pa = rootx;
}
}
if(cnt < n-1){
return INF;
}else{
return retsum;
}
}
int main(){
int T,n,m,cas = 0;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int a,b,c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
a--,b--;
edges[i].from = a;
edges[i].to = b;
edges[i].dist = c;
}
sort(edges,edges+m,cmp);
int mst = Kruskal(n,m);
printf("Case #%d : ",++cas);
if(mst == -1){
puts("No way");
continue;
}
int ans = INF;
for(int i = 0; i < num; i++){
int tmp = SecKruskal(n,m,store[i]);
ans = min(ans,tmp);
}
if(ans == INF){
puts("No second way");
}else{
printf("%d\n",ans);
}
}
return 0;
}

  

UVA 10462 —— Is There A Second Way Left?——————【最小生成树、kruskal、重边】的更多相关文章

  1. UVA 10462 Is There A Second Way Left? 次小生成树

    模板题 #include <iostream> #include <algorithm> #include <cstdio> #include <cstdli ...

  2. UVA 10462 Is There A Second Way Left?(次小生成树&Prim&Kruskal)题解

    思路: Prim: 这道题目中有重边 Prim可以先加一个sec数组来保存重边的次小边,这样不会影响到最小生成树,在算次小生成树时要同时判断次小边(不需判断是否在MST中) Kruskal: Krus ...

  3. UVA 10462 Is There A Second Way Left? (次小生成树+kruskal)

    题目大意: Nasa应邻居们的要求,决定用一个网络把大家链接在一起.给出v个点,e条可行路线,每条路线分别是x连接到y需要花费w. 1:如果不存在最小生成树,输出“No way”. 2:如果不存在次小 ...

  4. UVA - 10462 Is There A Second Way Left?

    题意: 给你一张无向图,让你判断三种情况:1.不是连通图(无法形成生成树)2.只能生成唯一的生成树 3.能生成的生成树不唯一(有次小生成树),这种情况要求出次小生成树的边权值和. 思路: 比较常见的次 ...

  5. 【UVA 10307 Killing Aliens in Borg Maze】最小生成树, kruscal, bfs

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20846 POJ 3026是同样的题,但是内存要求比较严格,并是没有 ...

  6. 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)

    [题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...

  7. UVA - 1279 Asteroid Rangers (动点的最小生成树)

    题意,有n个匀速动点,求最小生成树的改变次数. 一句话总结:动态问题的一般做法是先求出一个静态的解,然后求出解发生改变的事件,事件按照时间排序,依次处理. 先求出最开始的最小生成树(MST),当MST ...

  8. UVA - 1395 Slim Span (最小生成树Kruskal)

    Kruskal+并查集. 点很少,按边权值排序,枚举枚举L和R,并查集检查连通性.一旦连通,那么更新答案. 判断连通可以O(1),之前O(n)判的,第一次写的过了,后来T.. #include< ...

  9. 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)

    题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...

随机推荐

  1. SharpCompress压缩和解压缩,并解决压缩的中文乱码问题

    一.下载SharpCompress库 二.解压缩 (1)不带密码 /// <summary> /// 解压缩(支持rar,zip) /// </summary> /// < ...

  2. boostrap 进入条显示百分比

    <div class="progress"> <div class="progress-bar progress-bar-success"  ...

  3. sort排序bug乱序

    项目需要对组件的zIndex值进行降序排列,刚开始采用的是sort进行排序,排完之后感觉没问题,毕竟也是经常用的,可是昨天无意中把zIndex值打出来看,一看不知道,发现只要排序的组件超过10个就出问 ...

  4. ajaxs

    AJAX 是一种独立于 Web 服务器软件的浏览器技术.AJAX 基于下列 Web 标准:JavaScript XML HTML CSS 在 AJAX 中使用的 Web 标准已被良好定义,并被所有的主 ...

  5. 区块链中的密码学(-)区块链中运用最广的散列算法-SHA256算法分析与实现

    在很多技术人员的眼中,区块链并不是一种新的技术,而是过去很多年计算机技术的组合运用.而在这个方方面面技术的运用上,基于密码学的加密算法可以说是区块链各种特点得以表现的根本,一旦目前使用的加密算法被证实 ...

  6. C++基础学习9:构造函数和析构函数

    1.  构造函数用来对类对象进行初始化,它完成对内存空间的申请.赋初值等工作.  2.  析构函数主要是用来做清理工作的. 补充:函数名或变量名前面有"::"但是没有类名,说明这是 ...

  7. kuangbin专题十六 KMP&&扩展KMP HDU2328 Corporate Identity

    Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...

  8. spring 和 spirngMvc 中 异常处理

    spring 中 的 异常处理 使用的是aspectj @Aspect @Component /** * * @author **** * @createData 2017年7月13日 上午8:36: ...

  9. C语言中变量的存储类型

    在C语言中,对变量的存储类型说明有以下四种: auto 自动变量register   寄存器变量extern 外部变量static   静态变量 自动变量和寄存器变量属于动态存储方式,外部变量和静态变 ...

  10. js-eval运算符

    js中使用eval运算符需要注意—— eval()只有一个参数 传入的参数是字符串时,才会去解析执行:否则,将直接返回这个参数 作用域与调用它的变量作用域保持一致 返回字符串中最后一个表达式或语句的值 ...