UVA 10462 —— Is There A Second Way Left?——————【最小生成树、kruskal、重边】
Nasa, being the most talented programmer of his time, can’t think things to be so simple. Recently all his neighbors have decided to connect themselves over a network (actually all of them want to share a broadband internet connection :-)). But he wants to minimize the total cost of cable required as he is a bit fastidious about the expenditure of the project. For some unknown reasons, he also wants a second way left. I mean, he wants to know the second best cost (if there is any which may be same as the best cost) for the project. I am sure, he is capable of solving the problem. But he is very busy with his private affairs(?) and he will remain so. So, it is your turn to prove yourself a good programmer. Take the challenge (if you are brave enough)...
Input:
Input starts with an integer t ≤ 1000 which denotes the number of test cases to handle. Then follows t datasets where every dataset starts with a pair of integers v (1 ≤ v ≤ 100) and e (0 ≤ e ≤ 200). v denotes the number of neighbors and e denotes the number of allowed direct connections among them. The following e lines contain the description of the allowed direct connections where each line is of the form ‘start end cost’, where start and end are the two ends of the connection and cost is the cost for the connection. All connections are bi-directional and there may be multiple connections between two ends.
Output:
There may be three cases in the output
1. No way to complete the task,
2. There is only one way to complete the task,
3. There are more than one way.
Output ‘No way’ for the first case, ‘No second way’ for the second case and an integer c for the third case where c is the second best cost. Output for a case should start in a new line.
Sample Input:
4
5 4
1 2 5
3 2 5
4 2 5
5 4 5
5 3
1 2 5
3 2 5
5 4 5
5 5
1 2 5
3 2 5
4 2 5
5 4 5
4 5 6
1 0
Sample Output:
Case #1 : No second way
Case #2 : No way
Case #3 : 21
Case #4 : No second way
题目大意:给你n个顶点,m条边。如果图是不连通的,输出No way,如果没有次小生成树,输出No second way,如果有次小生成树,输出次小生成树的值。有重边。
解题思路:对于有重边的情况,我们可以用kruskal做,枚举删除最小生成树上的边,进行n-1次枚举,更新出次小生成树。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
using namespace std;
const int maxn = 110;
const int INF = 0x3f3f3f3f;
struct Edge{
int from,to,dist;
}edges[maxn*maxn];
struct Set{
int pa,rela;
}sets[maxn];
int store[maxn];
bool cmp(Edge a,Edge b){
return a.dist < b.dist;
}
void init(int n){
for(int i = 0; i <= n; i++){
sets[i].pa = i;
}
}
int Find(int x){
if(x == sets[x].pa){
return x;
}
int tmp = sets[x].pa;
sets[x].pa = Find(tmp);
return sets[x].pa;
}
int num =0;
int Kruskal(int n,int m){
init(n);
int rootx,rooty,x,y;
int retsum = 0;
num = 0;
for(int i = 0; i < m; i++){
Edge & e = edges[i];
x = e.from, y = e.to;
rootx = Find(x);
rooty = Find(y);
if(rootx != rooty){
store[num++] = i;
retsum += edges[i].dist;
sets[rooty].pa = rootx;
}
}
if(num < n-1){
return -1;
}else{
return retsum;
}
}
int SecKruskal(int n,int m,int mark){
init(n);
int rootx,rooty,x,y;
int retsum = 0, cnt = 0;
for(int i = 0; i < m; i++){
if(mark == i) continue;
Edge & e = edges[i];
x = e.from, y = e.to;
rootx = Find(x);
rooty = Find(y);
if(rootx != rooty){
cnt++;
retsum += edges[i].dist;
sets[rooty].pa = rootx;
}
}
if(cnt < n-1){
return INF;
}else{
return retsum;
}
}
int main(){
int T,n,m,cas = 0;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int a,b,c;
for(int i = 0; i < m; i++){
scanf("%d%d%d",&a,&b,&c);
a--,b--;
edges[i].from = a;
edges[i].to = b;
edges[i].dist = c;
}
sort(edges,edges+m,cmp);
int mst = Kruskal(n,m);
printf("Case #%d : ",++cas);
if(mst == -1){
puts("No way");
continue;
}
int ans = INF;
for(int i = 0; i < num; i++){
int tmp = SecKruskal(n,m,store[i]);
ans = min(ans,tmp);
}
if(ans == INF){
puts("No second way");
}else{
printf("%d\n",ans);
}
}
return 0;
}
UVA 10462 —— Is There A Second Way Left?——————【最小生成树、kruskal、重边】的更多相关文章
- UVA 10462 Is There A Second Way Left? 次小生成树
模板题 #include <iostream> #include <algorithm> #include <cstdio> #include <cstdli ...
- UVA 10462 Is There A Second Way Left?(次小生成树&Prim&Kruskal)题解
思路: Prim: 这道题目中有重边 Prim可以先加一个sec数组来保存重边的次小边,这样不会影响到最小生成树,在算次小生成树时要同时判断次小边(不需判断是否在MST中) Kruskal: Krus ...
- UVA 10462 Is There A Second Way Left? (次小生成树+kruskal)
题目大意: Nasa应邻居们的要求,决定用一个网络把大家链接在一起.给出v个点,e条可行路线,每条路线分别是x连接到y需要花费w. 1:如果不存在最小生成树,输出“No way”. 2:如果不存在次小 ...
- UVA - 10462 Is There A Second Way Left?
题意: 给你一张无向图,让你判断三种情况:1.不是连通图(无法形成生成树)2.只能生成唯一的生成树 3.能生成的生成树不唯一(有次小生成树),这种情况要求出次小生成树的边权值和. 思路: 比较常见的次 ...
- 【UVA 10307 Killing Aliens in Borg Maze】最小生成树, kruscal, bfs
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20846 POJ 3026是同样的题,但是内存要求比较严格,并是没有 ...
- 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)
[题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...
- UVA - 1279 Asteroid Rangers (动点的最小生成树)
题意,有n个匀速动点,求最小生成树的改变次数. 一句话总结:动态问题的一般做法是先求出一个静态的解,然后求出解发生改变的事件,事件按照时间排序,依次处理. 先求出最开始的最小生成树(MST),当MST ...
- UVA - 1395 Slim Span (最小生成树Kruskal)
Kruskal+并查集. 点很少,按边权值排序,枚举枚举L和R,并查集检查连通性.一旦连通,那么更新答案. 判断连通可以O(1),之前O(n)判的,第一次写的过了,后来T.. #include< ...
- 【uva 1151】Buy or Build(图论--最小生成树+二进制枚举状态)
题意:平面上有N个点(1≤N≤1000),若要新建边,费用是2点的欧几里德距离的平方.另外还有Q个套餐,每个套餐里的点互相联通,总费用为Ci.问让所有N个点连通的最小费用.(2组数据的输出之间要求有换 ...
随机推荐
- Win10每次开机总是自动弹出MSN网址导航如何取消
Win10每次开机总是自动弹出MSN网址导航如何取消 近来有用户在升级Win10系统后,每次开机总是会自动弹出MSN中文网的网址导航.如果不想要开机打开MSN网址导航,那么应该怎么设置来取消呢?对此, ...
- UGUI 深度優化提升手遊效能
https://hackmd.io/s/S1z1ByaGb#UGUI-%E6%B7%B1%E5%BA%A6%E5%84%AA%E5%8C%96%E6%8F%90%E5%8D%87%E6%89%8B%E ...
- Iterator 遍历器
1.遍历器(Iterator)是一种接口,为各种不同的数据结构提供统一的访问机制.任何数据结构只要部署Iterator接口,就可以完成遍历操作(即依次处理该数据结构的所有成员). 2.Iterator ...
- Java基础之对包,类,方法,变量理解(灵感)
包,类,方法,变量 灵感乍现 感觉就如电脑上的各个大小文档一般,只不过名称不同,用法不同,功效不同,就好比你要调用网上的一个图片,这个图片可以是变量,可以是方法,可以是类.你要调用可以把他幻化成接口, ...
- Pycharm新手教程,只需要看这篇就够了
pycharm是一款高效的python IDE工具,它非常强大,且可以跨平台,是新手首选工具!下面我给第一次使用这款软件的朋友做一个简单的使用教程,希望能给你带来帮助! 目前pycharm一共有两个版 ...
- 5分钟构建无服务器敏感词过滤后端系统(基于FunctionGraph)
摘要:开发者通过函数工作流,无需配置和管理服务器,以无服务器的方式构建应用,便能开发出一个弹性高可用的后端系统.托管函数具备以毫秒级弹性伸缩.免运维.高可靠的方式运行,极大地提高了开发和运维效率,减小 ...
- vue 学习一
这个是很早之前公司要使用vue.js时候学习记在有道云笔记上的,发觉那个笔记贼多了,没办法,觉得是要换个地方存笔记了, 一vue.js的使用: 可以在页面是直接使用: <!DOCTYPE htm ...
- 读经典——《CLR via C#》(Jeffrey Richter著) 笔记_引用类型和值类型(二)
[引用类型和值类型的区别] //引用类型(由于使用了‘class’) class SomeRef { public Int32 x; } //值类型(由于使用了‘struct’) struct Som ...
- vs 部署SharePoint项目时, package丢失
bug描述:vs部署sharepoint项目时报错:重启iis应用池失败,未将对象设置引用到实例. 解决方案:查看项目文件(包括隐藏文件),发现package文件不见了,在回收站内能找到被删除的pac ...
- hdu6223 Infinite Fraction Path 2017沈阳区域赛G题 bfs加剪枝(好题)
题目传送门 题目大意:给出n座城市,每个城市都有一个0到9的val,城市的编号是从0到n-1,从i位置出发,只能走到(i*i+1)%n这个位置,从任意起点开始,每走一步都会得到一个数字,走n-1步,会 ...