题目大意:
  给出一个$n(n\leq 10^5)$个结点的带边权的树,$q(q\leq 10^5)$个询问,每次询问用$y$条路径覆盖整棵树且覆盖$x$至少一次,最多能覆盖的道路长度是多少?
  强制在线。

思路:
  考虑固定$x$时的情况,我们可以使用长链剖分,然后贪心地选择$2y$条长链,每$2$条可以组成一条路径,这样就找出了$y$条路径的最优方案,均摊复杂度$O(n)$。
  现在考虑$x$不固定的情况,对于每个询问分别做一次长链剖分,复杂度是$O(nq)$的,显然会超时。
  考虑如何只用一次树剖解决所有的询问。
  问题也就变成了如何确定一个根,使得所有询问的覆盖方案中,每条路径都会经过这个根。
  显然,经过一点最长的路径肯定会经过直径的一个端点。
  因此我们可以将直径的任一端点作为根结点开始树剖,然后贪心地选$2y-1$条最长链(最长的一条本身就是一条路径),这样时间复杂度就是$O(n+q)$。
  但是这样并不是完全正确的,因为$2y-1$条最长链不一定能涵盖$x$。
  因此我们需要将其中一条替换成一条经过$x$的链。
  具体分为以下三种情况:
    1.直接把最短的一整条链去掉;
    2.把从根结点出发的一条链去掉上面一半;
    3.把离$x$最近的一条链去掉下面$y$一半。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=;
struct Edge {
int to,w;
};
bool vis[N];
std::queue<int> q;
std::vector<Edge> e[N];
int dis[N],far[N],par[N],top[N],son[N],leaf[N],rank[N],sum[N],root;
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
e[v].push_back((Edge){u,w});
}
inline void bfs() {
q.push(root=);
vis[]=true;
while(!q.empty()) {
const int x=q.front();
q.pop();
if(dis[x]>dis[root]) root=x;
for(register unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(vis[y]) continue;
dis[y]=dis[x]+w;
vis[y]=true;
q.push(y);
}
}
dis[root]=;
}
void dfs1(const int &x,const int &par) {
son[x]=;
::par[x]=par;
far[x]=dis[x];
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(y==par) continue;
dis[y]=dis[x]+w;
dfs1(y,x);
if(far[y]>far[x]) {
far[x]=far[y];
son[x]=y;
}
}
}
void dfs2(const int &x) {
if(x==son[par[x]]) {
top[x]=top[par[x]];
} else {
top[x]=x;
}
if(son[x]) {
dfs2(son[x]);
} else {
leaf[++leaf[]]=x;
}
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to;
if(y==par[x]||y==son[x]) continue;
dfs2(y);
}
}
inline bool cmp(const int &x,const int &y) {
return dis[x]-dis[par[top[x]]]>dis[y]-dis[par[top[y]]];
}
inline int query(const int &x,const int &y) {
if(rank[top[x]]<=y*-) {
return sum[std::min(y*-,leaf[])];
}
int u=x;
while(rank[top[u]]>y*-) {
u=par[top[u]];
}
return sum[y*-]-std::min(std::min(sum[y*-]-sum[y*-],far[u]-dis[u]),dis[u])+(far[x]-dis[u]);
}
int main() {
const int n=getint(),q=getint();
for(register int i=;i<n;i++) {
const int u=getint(),v=getint(),w=getint();
add_edge(u,v,w);
}
bfs();
dfs1(root,);
dfs2(root);
std::sort(&leaf[],&leaf[+leaf[]],cmp);
for(register int i=;i<=leaf[];i++) {
rank[top[leaf[i]]]=i;
sum[i]=sum[i-]+dis[leaf[i]]-dis[par[top[leaf[i]]]];
}
for(register int i=,ans=;i<q;i++) {
const int x=(getint()+ans-)%n+,y=(getint()+ans-)%n+;
printf("%d\n",ans=query(x,y));
}
return ;
}

[CF526G]Spiders Evil Plan的更多相关文章

  1. 【CF526G】Spiders Evil Plan(贪心)

    [CF526G]Spiders Evil Plan(贪心) 题面 洛谷 CodeForces 给定一棵树,要求选择\(y\)条链,满足被链覆盖的所有点在树上联通,且\(x\)必定在联通块中. 对于每次 ...

  2. CF Contest 526 G. Spiders Evil Plan 长链剖分维护贪心

    LINK:Spiders Evil Plan 非常巧妙的题目. 选出k条边使得这k条边的路径覆盖x且覆盖的边的边权和最大. 类似于桥那道题还是选择2k个点 覆盖x那么以x为根做长链剖分即可. 不过这样 ...

  3. Codeforces 526G Spiders Evil Plan

    由于做的时候看的是中文题面,第一遍写就被卡题意了:还以为每一条都要过x,那么就是一道动态树根选择2y个叶子的奇怪题目 交完0分gg,才发现题目看错了╮(╯▽╰)╭ the node containin ...

  4. Codeforces 526G - Spiders Evil Plan(长链剖分+直径+找性质)

    Codeforces 题目传送门 & 洛谷题目传送门 %%%%% 这题也太神了吧 storz 57072 %%%%% 首先容易注意到我们选择的这 \(y\) 条路径的端点一定是叶子节点,否则我 ...

  5. code forces 383 Arpa's loud Owf and Mehrdad's evil plan(有向图最小环)

    Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...

  6. Arpa's loud Owf and Mehrdad's evil plan

    Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 megab ...

  7. Codeforces Round #383 (Div. 2)C. Arpa's loud Owf and Mehrdad's evil plan

    C. Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 me ...

  8. Codeforces Round #383 (Div. 2) C. Arpa's loud Owf and Mehrdad's evil plan —— DFS找环

    题目链接:http://codeforces.com/contest/742/problem/C C. Arpa's loud Owf and Mehrdad's evil plan time lim ...

  9. 【codeforces 742C】Arpa's loud Owf and Mehrdad's evil plan

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

随机推荐

  1. 用Python实现基于Hadoop Stream的mapreduce任务

    用Python实现基于Hadoop Stream的mapreduce任务 因为Hadoop Stream的存在,使得任何支持读写标准数据流的编程语言实现map和reduce操作成为了可能. 为了方便测 ...

  2. OpenCV实现张正友相机标定源代码

    本源代码基于VC++和opencv Opencv2.4.13.6版本开发,实现张正友相机标定源代码,资源包括完整源代码和12张棋盘图片,完美运行.Opencv2.4.13.6安装包下载地址:http: ...

  3. 第二阶段团队冲刺-three

    昨天: 修复博客作业查询功能. 今天: 绘制logo. 遇到的问题: 无.

  4. PHP生成随机数函数rand(min,max)

    rand(min,max):生成min到max 的随机数,注意:包括边界rand() 返回 0 到 RAND_MAX 之间的伪随机整数.例如,想要 5 到 15(包括 5 和 15)之间的随机数,用 ...

  5. 整数拆分 [dp+多项式插值]

    题意 $1 \leq n \leq 10^{18}$ $2 \leq m \leq 10^{18}$ $1 \leq k \leq 20$ 思路 n,m较小 首先考虑朴素的$k=1$问题: $f[i] ...

  6. [poj] 3977 Subset || 折半搜索MITM

    原题 给定N个整数组成的数列(N<=35),从中选出一个子集,使得这个子集的所有元素的值的和的绝对值最小,如果有多组数据满足的话,选择子集元素最少的那个. n<=35,所以双向dfs的O( ...

  7. BZOJ2599 [IOI2011]Race 【点分治】

    题目 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 输入格式 第一行 两个整数 n, k 第二..n行 每行三个整 ...

  8. BFC,IFC,GFC,FFC

    FC的全称是:Formatting Contexts,是W3C CSS2.1规范中的一个概念.它是页面中的一块渲染区域,并且有一套渲染规则,它决定了其子元素将如何定位,以及和其他元素的关系和相互作用. ...

  9. 向mysql中批量插入数据的性能分析

    MYSQL批量插入数据库实现语句性能分析 假定我们的表结构如下 代码如下   CREATE TABLE example (example_id INT NOT NULL,name VARCHAR( 5 ...

  10. 关于0x*** 十六进制的运算。为什么枚举多用十六进制的运算原因。。

    1.看个人爱好 2.可以看出布尔运算的结果. 3.可以更快进行and和or 运算