poj 1991 Turning in Homework dp
这个可以证明必须从两边的任务开始交起,因为中间交的任务可以后面经过的时候再交,所以就变成了一个n*n的dp。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e3+9;
int dp[maxn][maxn][2];
struct D
{
int x,t;
bool operator <(const D & xx) const
{
return x<xx.x;
}
}a[maxn]; int ff(int x)
{
if(x<0) return -x;
return x;
} int main()
{
int n,m,b;
while(scanf("%d %d %d",&n,&m,&b)!=EOF)
{
for(int i=1;i<=n;i++)
scanf("%d %d",&a[i].x,&a[i].t);
sort(a+1,a+1+n);
memset(dp,50,sizeof(dp));
dp[0][n+1][0]=0;
for(int k=0;k<n;k++)
for(int i=0;i<=k;i++)
{
int tmp=max(dp[i][n+1-(k-i)][0]+a[i+1].x-a[i].x,a[i+1].t);
dp[i+1][n+1-(k-i)][0]=min(dp[i+1][n+1-(k-i)][0],tmp); tmp=max(dp[i][n+1-(k-i)][0]+a[n+1-(k-i)-1].x-a[i].x,a[n+1-(k-i)-1].t);
dp[i][n+1-(k-i)-1][1]=min(dp[i][n+1-(k-i)-1][1],tmp); tmp=max(dp[i][n+1-(k-i)][1]+a[n+1-(k-i)].x-a[n+1-(k-i)-1].x,a[n+1-(k-i)-1].t);
dp[i][n+1-(k-i)-1][1]=min(dp[i][n+1-(k-i)-1][1],tmp); tmp=max(dp[i][n+1-(k-i)][1]+a[n+1-(k-i)].x-a[i+1].x,a[i+1].t);
dp[i+1][n+1-(k-i)][0]=min(dp[i+1][n+1-(k-i)][0],tmp);
}
int ans=1e10;
for(int i=0;i<=n;i++)
{
ans=min(ans,dp[i][i+1][0]+ff(b-a[i].x));
ans=min(ans,dp[i][i+1][1]+ff(b-a[i+1].x));
}
cout<<ans<<endl;
}
return 0;
}
poj 1991 Turning in Homework dp的更多相关文章
- POJ 1991 Turning in Homework(区间DP)
题目链接 Turning in Homework 考虑区间DP $f[i][j][0]$为只考虑区间$[i, j]$且最后在$a[i]$位置交作业的答案. $f[i][j][1]$为只考虑区间$[i, ...
- 【BZOJ3379】[Usaco2004 Open]Turning in Homework 交作业 DP
[BZOJ3379][Usaco2004 Open]Turning in Homework 交作业 Description 贝茜有C(1≤C≤1000)门科目的作业要上交,之后她要去坐巴士和奶 ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- poj 3311(状态压缩DP)
poj 3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...
- poj 1185(状态压缩DP)
poj 1185(状态压缩DP) 题意:在一个N*M的矩阵中,‘H'表示不能放大炮,’P'表示可以放大炮,大炮能攻击到沿横向左右各两格,沿纵向上下各两格,现在要放尽可能多的大炮使得,大炮之间不能相互 ...
- poj 3254(状态压缩DP)
poj 3254(状态压缩DP) 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相 ...
- poj 2324 Anniversary party(树形DP)
/*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ...
- [BZOJ3379] Turning in Homework
中文题目:提交作业 原文题目:Turning in Homework 传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3379 哎,今天竟然没有 ...
- 【bzoj3379】[Usaco2004 Open]Turning in Homework 交作业 区间dp
题目描述 数轴上有C个点,每个点有一个坐标和一个访问时间,必须在这个时间后到达这个点才算访问完成.可以在某个位置停留.每在数轴上走一个单位长度消耗一个单位的时间,问:访问所有点并最终到B花费的最小时间 ...
随机推荐
- 用js模拟struts2的多action调用
近期修了几个struts2.1升级到2.3后动态方法调用失效的bug,深有感悟, 原始方法能够參考我之前的博文:struts2.1升级到2.3后动态调用方法问题 可是我那种原始方法有一个局限,就是在s ...
- Android异步载入全解析之使用多线程
异步载入之使用多线程 初次尝试 异步.异步,事实上说白了就是多任务处理.也就是多线程执行.多线程那就会有各种问题,我们一步步来看.首先.我们创建一个class--ImageLoaderWithoutC ...
- perl eval
eval 表达式: eval 块: eval 在第一种形式,通常称为一个字符串eval EXPR 返回值是被解析的和被执行的作为一个小小的Perl程序. 表达式的值(是它本身决定的在标量上下文环境)是 ...
- Fedora 17 下安装codeblocks
Fedora 17 下安装codeblocks: 1.直接从yum源安装: sudo yum install codeblocks 2.源码安装 ...
- 性能测试之LoardRunner 自动关联
1.什么是自动关联? 2.实例介绍 以下是详细介绍: 自动化关联:它是VuGen提供的自动化扫描关联处理策略,它的原理是对同一个脚本运行和录制时的服务器返回进行比较,来自动查找变化的部分,并且提示是否 ...
- VxWorks6.6 pcPentium BSP 使用说明(二):创建启动盘
本篇介绍从Solaris.Linux.Windows或VxWorks创建VxWorks启动盘的方法. 从Solaris或Linux创建启动盘 使用Solaris或Linux自带的工具/usr/bin/ ...
- 自己总结的ruby on rails 查询方法
闲来无事,结合以前的代码,总结了ruby on rails的查询方法,方便自己以后查看,也方便后来人,如下,欢迎批评指正 1::simpleDB modules = find(:all, :condi ...
- MSSQL - 通用存储过程
通用插入存储过程: -- ============================================= -- Author: HF_Ultrastrong -- Create date: ...
- 基于visual Studio2013解决面试题之0405和最大的子矩阵
题目
- HDU1584:蜘蛛牌(DFS)
Problem Description 蜘蛛牌是windows xp操作系统自带的一款纸牌游戏,游戏规则是这样的:只能将牌拖到比她大一的牌上面(A最小,K最大),如果拖动的牌上有按顺序排好的牌时,那么 ...