HDU 1956 POJ 1637 Sightseeing tour
混合图的欧拉回路判定方法:
1.首先判断基图是否连通,不连通的话表示不可能,否则进入下一步。
2.对于无向边,随便确定一个方向
3.确定好了之后,整张图就变成了有向图,计算每个节点的入度与出度
4.如果有一个节点的入度—出度是奇数,那么表示不可能,否则进入下一步
5.建立网络,新增一个原点s,和汇点t,然后建立网络
for(i=; i<=M; i++)
if(ff[i]==)//如果是有向边
AddEdge(u[i],v[i],);
for(i=; i<=N; i++)
{
if(Ru[i]>Chu[i])
AddEdge(i,t,(Ru[i]-Chu[i])/);
else
AddEdge(s,i,(Chu[i]++-Ru[i])/);
}
6.计算网络最大流。
7.如果从S引出的边有流量的都是满流,那么表示存在,否则不存在。
8.把网络流中与S,T不关联的边找到,这些边中如果有流量等于1的边,那么将这些边反向,最终得到了一张欧拉图。
AC代码(网络最大流用了Dinic连续最短增广路算法):
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std; const int maxn=+;
const int INF=0x7FFFFFFF; struct Edge
{
int from,to,cap,flow;
};
vector<Edge>edges;
vector<int>G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
int Ru[maxn];
int Chu[maxn];
int u[maxn],v[maxn],ff[maxn];
int father[maxn];
int m,s,t,tot;
int N,M; //求出层次网络
bool BFS()
{
memset(vis,,sizeof(vis));
queue<int>Q;
Q.push(s);
d[s]=;
vis[s]=;
while(!Q.empty())
{
int x=Q.front();
Q.pop();
for(int i=; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=;
d[e.to]=d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
} //加边
void AddEdge(int from,int to,int cap)
{
Edge r;
r.from=from;
r.to=to;
r.cap=cap;
r.flow=;
edges.push_back(r);
Edge d;
d.from=to;
d.to=from;
d.cap=;
d.flow=;
edges.push_back(d);
m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} //每个阶段来一次DFS增广
int DFS(int x,int a)
{
if(x==t||a==) return a;
int flow=,f;
for(int i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>)
{
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
} //多个阶段,多次建立层次网络。
int Maxflow(int ss,int tt)
{
int flow=;
while(BFS())
{
memset(cur,,sizeof(cur));
flow+=DFS(ss,INF);
}
return flow;
} int Find(int x)
{
if(x!=father[x]) father[x]=Find(father[x]);
return father[x];
} int main()
{
int T,flag,i;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&N,&M);
edges.clear();
for(i=; i<maxn; i++) G[i].clear();
flag=;
s=,t=N+;//设置超级原点和超级汇点
memset(Ru,,sizeof(Ru));
memset(Chu,,sizeof(Chu));
for(i=;i<=N;i++) father[i]=i;
tot=N;
for(i=; i<=M; i++)
{
scanf("%d%d%d",&u[i],&v[i],&ff[i]);
int fx=Find(u[i]);
int fy=Find(v[i]);
if(fx!=fy)
{
father[fx]=fy;
tot--;
}
Ru[v[i]]++;
Chu[u[i]]++;
}
if(tot!=) flag=;
if(flag)
{
for(i=; i<=N; i++)
if(abs(Ru[i]-Chu[i])%==)
{
flag=;
break;
}
}
if(flag)
{
for(i=; i<=M; i++)
if(ff[i]==)//如果是有向边
AddEdge(u[i],v[i],);
for(i=; i<=N; i++)
{
if(Ru[i]>Chu[i])
AddEdge(i,t,(Ru[i]-Chu[i])/);
else
AddEdge(s,i,(Chu[i]++-Ru[i])/);
}
Maxflow(s,t);
for(i=; i<edges.size(); i++)
if(edges[i].from==s&&edges[i].cap!=edges[i].flow)
{
flag=;
break;
}
}
if(flag) printf("possible\n");
else printf("impossible\n");
}
return ;
}
HDU 1956 POJ 1637 Sightseeing tour的更多相关文章
- POJ 1637 Sightseeing tour(最大流)
POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- POJ 1637 Sightseeing tour
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9276 Accepted: 3924 ...
- POJ 1637 Sightseeing tour (混合图欧拉回路)
Sightseeing tour Description The city executive board in Lund wants to construct a sightseeing tou ...
- 网络流(最大流) POJ 1637 Sightseeing tour
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8628 Accepted: 3636 ...
- POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6448 Accepted: 2654 ...
- POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)
http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...
- poj 1637 Sightseeing tour——最大流+欧拉回路
题目:http://poj.org/problem?id=1637 先给无向边随便定向,如果一个点的入度大于出度,就从源点向它连 ( 入度 - 出度 / 2 ) 容量的边,意为需要流出去这么多:流出去 ...
随机推荐
- 快速上手微信小程序-快递100
2007 年 1 月 9 日,乔布斯在旧金山莫斯科尼会展中心发布了首款 iPhone,而在十年后的 1 月 9 日,微信小程序正式上线.张小龙以这样的形式,向乔布斯致敬. 小程序在哪里? 小程序功能模 ...
- XAF-BI.Dashboard模块概述 web/win
Dashboard模块介绍了在ASP.NET XAF 和 WinForms 应用程序中简单的集成 DevExpress Dashboard控件的方法. 其实不仅仅是控件,利用了现有的XAF数据模型,这 ...
- Docker 第三篇--构建Image
什么是 docker Image 和container? 我们先来看看官网是怎么说的. Docker Engine provides the core Docker technology that e ...
- System.InvalidOperationException: 找到多个与名为“Home”的控制器匹配的类型。
一,当项目中存在多个网站报错,而不是新增Area出现这个错误时.应该在RouteConfig这样改: using System; using System.Collections.Generic; u ...
- ext3学习小结
先介绍一下ext3和ext4的一些区别吧,初看ext4相对于ext3源码还是有很多不同的,ext4加入的define和create两个强大的类,ext4为了让源码容易看,特意将所有的类进行了defin ...
- ffmpeg的安装--opencv视频处理必备
安装yasm(ffmpeg必备)wget http://www.tortall.net/projects/yasm/releases/yasm-1.3.0.tar.gztar xzvf yasm-1. ...
- C#程序基础
- centos 6.5 安装openssl
1.下载wget https://www.openssl.org/source/openssl-1.0.2h.tar.gz 2.解压tar zxf openssl-1.0.2h.tar.gzcd op ...
- NASPhoto Station不只是储存的强大照片管理功能
减少漫长的讨论时间,进而让你的艺术作品更符合客户需求.Photo Station 让你集中存储照片.随处分享及存取相簿并轻松收集朋友和客户反馈. 串流照片到大屏幕电视 DS photo 支援 Appl ...
- 支付宝AR实景红包上线不久即遭破解,官方已提高技术门槛
临近春节,阿里巴巴和腾讯的红包大战可谓下足功夫,上周支付宝推出了AR实景红包,该玩法基于"LBS+AR+红包"的方式,类似与今年火爆全球的AR手游Pekomon Go ,只不过这次 ...