遍历一段文字,统计每个字后面出现的字和其次数,当前一个字确定的时候,计算后一个字出现的百分比,用这个百分比作为文字生成器中后一个字出现的概率进行文字生成

 from random import randint

 def makeDict(text):
#替换换行符和引号
text = text.replace('\n', ' ')
text = text.replace('\“', '')
text = text.replace('\”', '') punc = [',', '。', '?', ';', ':', '!']
for symbol in punc:
text = text.replace(symbol, ' '+symbol+' ') words = [word for word in text if word != ''] wordict = {}
for i in range(1, len(text)):
if words[i-1] not in wordict:
wordict[words[i-1]] = {}
if words[i] not in wordict[words[i-1]]:
wordict[words[i-1]][words[i]] = 0
wordict[words[i-1]][words[i]] += 1 return wordict def wordLen(wordict):
sum = 0
for key, value in wordict.items():
sum += value
return sum def retriveRandomWord(wordict):
"""
感觉这个函数计算每个单词的机率的思路太帅了
:param wordict:
:return:
"""
randindex = randint(1, wordLen(wordict))
for key, value in wordict.items():
randindex -= value
if randindex <= 0:
return key with open('test.txt','r') as f:
t = f.read()
text = str(t)
wordict = makeDict(text) length = 200
chain = ''
currentword = '想'
for i in range(0, length):
chain += currentword
currentword = retriveRandomWord(wordict[currentword]) with open("res.txt",'w') as file:
file.write(chain)
print(chain)

这是利用《百年孤独》第一章的文字作为来源,生成的结果

——————————————————————————————————————————————————————————————————————

想发明把记得连同意地 自训练他完全村子 ,
来 乌苏娜和茄子和魔 衣衫褴楼的事长月里的大镜 来了 , ,
他完全    三枚殖民宜今还了恼人烟的概念头的诚实际上校站在梅尔加德斯教他另做了耐心得意地向他大葫 , ,
这些男人以后 但实际上校站在雨季的一个小时刻使送给政府 , 想证实了暑 , 霍·阿·布恩蒂亚还了 , , 。 。
帐篷门口 , , “科学家都盖在宅子和各部把这种理论 他告诫说:他的回来

————————————————————————————————————————————————————————————————————————

想发出的时候起 他带者两块磁铁 他所谓 。 , ,
在街道的最新开辟的想起父亲手里忙得喘不走到吃午饭的唯一的仪器 涉过山岭 。 。
说:他知道中间里的反 “只大镜  乌苏娜失败之后等待在村边搭起来踱去了一个月份
《指指瘦得厌烦了耐心 , “科学家的仪 , 沿着遍布恩蒂亚紧张的居民地努力 ,
霍·布恩蒂亚都有力 的马上 人的唯一座农舍走出来将会有力 向观众出的吉卜赛人 苍的回了自言自然停辍 今后 “

参考资料:《Python网络数据采集》P106

【Python】Markov text generator马尔科夫文字生成器的更多相关文章

  1. 隐马尔科夫模型(Hidden Markov Models)

    链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...

  2. Chapter 4 马尔科夫链

    4.1 引言 现在要研究的是这样一种过程: 表示在时刻的值(或者状态),想对一串连续时刻的值,比如:,, ... 建立一个概率模型. 最简单的模型就是:假设都是独立的随机变量,但是通常这种假设都是没什 ...

  3. 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)

    上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...

  4. 隐马尔科夫模型python实现简单拼音输入法

    在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此 ...

  5. Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结

    Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...

  6. 隐马尔科夫模型,第三种问题解法,维比特算法(biterbi) algorithm python代码

    上篇介绍了隐马尔科夫模型 本文给出关于问题3解决方法,并给出一个例子的python代码 回顾上文,问题3是什么, 下面给出,维比特算法(biterbi) algorithm 下面通过一个具体例子,来说 ...

  7. HMM隐马尔科夫算法(Hidden Markov Algorithm)初探

    1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...

  8. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  9. 隐马尔科夫模型(hidden Markov Model)

    万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法  2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...

随机推荐

  1. [整理]在命令行执行 UIAutomation

    instruments -t /Developer/Platforms/iPhoneOS.platform/Developer/Library/Instruments/PlugIns/Automati ...

  2. Silverlight类百度文库在线文档阅读器(转)

    百度文库阅读器是基于Flash的,用Silverlight其实也可以做. 我实现的在线阅读器可以应用于内网文档发布,在线阅览审批等.没有过多的堆积功能,专注于核心功能.主要有以下特性: 1. 基于XP ...

  3. HTML5 拖拽效果实现

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  4. CodeFirst 初恋

    CodeFirst 初恋 原著:Prorgamming Entity Framework Entitywork Code First 大家好! 我是AaronYang,这本书我也挺喜欢的,看了一半了, ...

  5. LAMP on ubuntu12.04 PHP, Apache2, MySQL, Linux ( with phpmyadmin installed)

    there are several procedure which include: 1. Install the packages sudo apt-get install php5 php5-gd ...

  6. hdu 1213 How Many Tables(并查集练习)

    题目链接:hdu1213 赤裸裸的并查集.....水题一个.... #include<stdio.h> #include<string.h> #include<algor ...

  7. ARM linux解析之压缩内核zImage的启动过程

    ARM linux解析之压缩内核zImage的启动过程 semilog@163.com 首先,我们要知道在zImage的生成过程中,是把arch/arm/boot/compressed/head.s  ...

  8. Python之路3Day

    3.python基础补充(集合,collection系列,深浅拷贝)   一.集合 1.集合(set): 把不同的元素组成一起形成集合,是python基本的数据类型.集合元素(set elements ...

  9. 重复弹Toast的解决方案

    虽然网上有很多了,还是记录一下吧, 解决思路:不用计算Toast的时间之类的,就是定义一个全局的成员变量Toast, 这个Toast不为null的时候才去make,否则直接setText.为了按返回键 ...

  10. ACE 容器之三 ACE_Unbounded_Queue的使用

    以下代码演示了如何在ACE_Unbounded_Queue这个队列容器中存储具体的数据元素和数据元素的指针. // ACEqueue.cpp : Defines the entry point for ...