遍历一段文字,统计每个字后面出现的字和其次数,当前一个字确定的时候,计算后一个字出现的百分比,用这个百分比作为文字生成器中后一个字出现的概率进行文字生成

 from random import randint

 def makeDict(text):
#替换换行符和引号
text = text.replace('\n', ' ')
text = text.replace('\“', '')
text = text.replace('\”', '') punc = [',', '。', '?', ';', ':', '!']
for symbol in punc:
text = text.replace(symbol, ' '+symbol+' ') words = [word for word in text if word != ''] wordict = {}
for i in range(1, len(text)):
if words[i-1] not in wordict:
wordict[words[i-1]] = {}
if words[i] not in wordict[words[i-1]]:
wordict[words[i-1]][words[i]] = 0
wordict[words[i-1]][words[i]] += 1 return wordict def wordLen(wordict):
sum = 0
for key, value in wordict.items():
sum += value
return sum def retriveRandomWord(wordict):
"""
感觉这个函数计算每个单词的机率的思路太帅了
:param wordict:
:return:
"""
randindex = randint(1, wordLen(wordict))
for key, value in wordict.items():
randindex -= value
if randindex <= 0:
return key with open('test.txt','r') as f:
t = f.read()
text = str(t)
wordict = makeDict(text) length = 200
chain = ''
currentword = '想'
for i in range(0, length):
chain += currentword
currentword = retriveRandomWord(wordict[currentword]) with open("res.txt",'w') as file:
file.write(chain)
print(chain)

这是利用《百年孤独》第一章的文字作为来源,生成的结果

——————————————————————————————————————————————————————————————————————

想发明把记得连同意地 自训练他完全村子 ,
来 乌苏娜和茄子和魔 衣衫褴楼的事长月里的大镜 来了 , ,
他完全    三枚殖民宜今还了恼人烟的概念头的诚实际上校站在梅尔加德斯教他另做了耐心得意地向他大葫 , ,
这些男人以后 但实际上校站在雨季的一个小时刻使送给政府 , 想证实了暑 , 霍·阿·布恩蒂亚还了 , , 。 。
帐篷门口 , , “科学家都盖在宅子和各部把这种理论 他告诫说:他的回来

————————————————————————————————————————————————————————————————————————

想发出的时候起 他带者两块磁铁 他所谓 。 , ,
在街道的最新开辟的想起父亲手里忙得喘不走到吃午饭的唯一的仪器 涉过山岭 。 。
说:他知道中间里的反 “只大镜  乌苏娜失败之后等待在村边搭起来踱去了一个月份
《指指瘦得厌烦了耐心 , “科学家的仪 , 沿着遍布恩蒂亚紧张的居民地努力 ,
霍·布恩蒂亚都有力 的马上 人的唯一座农舍走出来将会有力 向观众出的吉卜赛人 苍的回了自言自然停辍 今后 “

参考资料:《Python网络数据采集》P106

【Python】Markov text generator马尔科夫文字生成器的更多相关文章

  1. 隐马尔科夫模型(Hidden Markov Models)

    链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...

  2. Chapter 4 马尔科夫链

    4.1 引言 现在要研究的是这样一种过程: 表示在时刻的值(或者状态),想对一串连续时刻的值,比如:,, ... 建立一个概率模型. 最简单的模型就是:假设都是独立的随机变量,但是通常这种假设都是没什 ...

  3. 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)

    上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...

  4. 隐马尔科夫模型python实现简单拼音输入法

    在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此 ...

  5. Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结

    Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...

  6. 隐马尔科夫模型,第三种问题解法,维比特算法(biterbi) algorithm python代码

    上篇介绍了隐马尔科夫模型 本文给出关于问题3解决方法,并给出一个例子的python代码 回顾上文,问题3是什么, 下面给出,维比特算法(biterbi) algorithm 下面通过一个具体例子,来说 ...

  7. HMM隐马尔科夫算法(Hidden Markov Algorithm)初探

    1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...

  8. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  9. 隐马尔科夫模型(hidden Markov Model)

    万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法  2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...

随机推荐

  1. [转]Avoiding GDB Signal Noise.

    原文:http://peeterjoot.wordpress.com/2010/07/07/avoiding-gdb-signal-noise/ A quick note for future ref ...

  2. sublime text 3 插件:package control

    sublime text 3安装package control import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf ...

  3. 如何将 Area 中的 Controller 放到独立的程序集?

    目录 背景如何将 Area 中的 Controller 放到独立的程序集?备注 背景返回目录 本文假设您已经熟悉了 ASP.NET MVC 的常规开发方式.执行模型和关键扩展点,这里主要说一下如何使用 ...

  4. A2D规则引擎

    A2D规则引擎 写了个简单的规则引擎,普通情况够用了: 比如2家公司有各自的利率计算规则,如下: 在C#方面,没有写在C#的业务逻辑代码中,而是移到了外部规则文件中,如(ACompanyRatePol ...

  5. 论公司spring的滥用

    这个公司每个项目用不同的一套开发框架,实在忍不住拿一个出来说说事.

  6. SOA体系结构基础培训教程

    SOA体系结构基础培训教程-规范标准篇 引子:本文是<SOA体系结构基础培训教程>第3章<SOA标准与规范>课件,版权所有,转载请注明出处. 随着SOA在业界的应用日益广泛,S ...

  7. python email ==> send 发送邮件 :) [smtplib, email 模块]

    关于Email的预备知识: 原贴地址:http://www.cnblogs.com/lonelycatcher/archive/2012/02/09/2343480.html ############ ...

  8. [每日一题] OCP1z0-047 :2013-07-15 drop column

    如下实验: gyj@OCM> Create table emp( 2    Empno     number(4)    not null, 3    First_name  varchar2( ...

  9. hdu3415 Max Sum of Max-K-sub-sequence

       Max Sum of Max-K-sub-sequence Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64 ...

  10. Android 布局详解

    Android 布局详解 1.重用布局 当一个布局文件被多处使用时,最好<include>标签来重用布局. 例如:workspace_screen.xml的布局文件,在另一个布局文件中被重 ...