前言

绝大部分 Objective-C 程序员使用属性时,都不太关注一个特殊的修饰前缀,一般都无脑的使用其非默认缺省的状态,他就是 atomic

@interface PropertyClass

@property (atomic, strong)    NSObject *atomicObj;  //缺省也是atomic
@property (nonatomic, strong) NSObject *nonatomicObj; @end

入门教程中一般都建议使用非原子操作,因为新手大部分操作都在主线程,用不到线程安全的特性,大量使用还会降低执行效率。

那他到底怎么实现线程安全的呢?使用了哪种技术呢?


原理

属性的实现

首先我们研究一下属性包含的内容。通过查阅源码,其结构如下:

struct property_t {
const char *name; //名字
const char *attributes; //特性
};

属性的结构比较简单,包含了固定的名字和元素,可以通过 property_getName 获取属性名,property_getAttributes 获取特性。

上例中 atomicObj 的特性为 T@"NSObject",&,V_atomicObj,其中 V 代表了 strongatomic 特性缺省没有显示,如果是 nonatomic 则显示 N

那到底是怎么实现原子操作的呢? 通过引入runtime,我们能调试一下调用的函数栈。

可以看到在编译时就把属性特性考虑进去了,Setter 方法直接调用了 objc_setPropertyatomic 版本。这里不用 runtime 去动态分析特性,应该是对执行性能的考虑。

static inline void reallySetProperty(id self, SEL _cmd,
id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy) {
//偏移为0说明改的是isa
if (offset == 0) {
object_setClass(self, newValue);
return;
} id oldValue;
id *slot = (id*) ((char*)self + offset);//获取原值
//根据特性拷贝
if (copy) {
newValue = [newValue copyWithZone:nil];
} else if (mutableCopy) {
newValue = [newValue mutableCopyWithZone:nil];
} else {
if (*slot == newValue) return;
newValue = objc_retain(newValue);
}
//判断原子性
if (!atomic) {
//非原子直接赋值
oldValue = *slot;
*slot = newValue;
} else {
//原子操作使用自旋锁
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
oldValue = *slot;
*slot = newValue;
slotlock.unlock();
} objc_release(oldValue);
} id objc_getProperty(id self, SEL _cmd, ptrdiff_t offset, BOOL atomic) {
// 取isa
if (offset == 0) {
return object_getClass(self);
} // 非原子操作直接返回
id *slot = (id*) ((char*)self + offset);
if (!atomic) return *slot; // 原子操作自旋锁
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
id value = objc_retain(*slot);
slotlock.unlock(); // 出于性能考虑,在锁之外autorelease
return objc_autoreleaseReturnValue(value);
}

什么是自旋锁呢?

锁用于解决线程争夺资源的问题,一般分为两种,自旋锁(spin)和互斥锁(mutex)。

互斥锁可以解释为线程获取锁,发现锁被占用,就向系统申请锁空闲时唤醒他并立刻休眠。

自旋锁比较简单,当线程发现锁被占用时,会不断循环判断锁的状态,直到获取。

原子操作的颗粒度最小,只限于读写,对于性能的要求很高,如果使用了互斥锁势必在切换线程上耗费大量资源。相比之下,由于读写操作耗时比较小,能够在一个时间片内完成,自旋更适合这个场景。

自旋锁的坑

但是iOS 10之后,苹果因为一个巨大的缺陷弃用了 OSSpinLock 改为新的 os_unfair_lock

新版 iOS 中,系统维护了 5 个不同的线程优先级/QoS: background,utility,default,user-initiated,user-interactive。高优先级线程始终会在低优先级线程前执行,一个线程不会受到比它更低优先级线程的干扰。这种线程调度算法会产生潜在的优先级反转问题,从而破坏了 spin lock。

描述引用自 ibireme 大神的文章。

我的理解是,当低优先级线程获取了锁,高优先级线程访问时陷入忙等状态,由于是循环调用,所以占用了系统调度资源,导致低优先级线程迟迟不能处理资源并释放锁,导致陷入死锁。

那为什么原子操作用的还是 spinlock_t 呢?

using spinlock_t = mutex_tt<LOCKDEBUG>;
using mutex_t = mutex_tt<LOCKDEBUG>; class mutex_tt : nocopy_t {
os_unfair_lock mLock; //处理了优先级的互斥锁
void lock() {
lockdebug_mutex_lock(this);
os_unfair_lock_lock_with_options_inline
(&mLock, OS_UNFAIR_LOCK_DATA_SYNCHRONIZATION);
}
void unlock() {
lockdebug_mutex_unlock(this);
os_unfair_lock_unlock_inline(&mLock);
}
}

差点被苹果骗了!原来系统中自旋锁已经全部改为互斥锁实现了,只是名称一直没有更改。

为了修复优先级反转的问题,苹果也只能放弃使用自旋锁,改用优化了性能的 os_unfair_lock,实际测试两者的效率差不多。


问答

atomic的实现机制

使用atomic 修饰属性,编译器会设置默认读写方法为原子读写,并使用互斥锁添加保护。

为什么不能保证绝对的线程安全?

单独的原子操作绝对是线程安全的,但是组合一起的操作就不能保证。

- (void)competition {
self.intSource = 0; dispatch_async(queue1, ^{
for (int i = 0; i < 10000; i++) {
self.intSource = self.intSource + 1;
}
}); dispatch_async(queue2, ^{
for (int i = 0; i < 10000; i++) {
self.intSource = self.intSource + 1;
}
});
}

最终得到的结果肯定小于20000。当获取值的时候都是原子线程安全操作,比如两个线程依序获取了当前值 0,于是分别增量后变为了 1,所以两个队列依序写入值都是 1,所以不是线程安全的。

解决的办法应该是增加颗粒度,将读写两个操作合并为一个原子操作,从而解决写入过期数据的问题。

os_unfair_lock_t unfairLock;
- (void)competition {
self.intSource = 0; unfairLock = &(OS_UNFAIR_LOCK_INIT);
dispatch_async(queue1, ^{
for (int i = 0; i < 10000; i++) {
os_unfair_lock_lock(unfairLock);
self.intSource = self.intSource + 1;
os_unfair_lock_unlock(unfairLock);
}
}); dispatch_async(queue2, ^{
for (int i = 0; i < 10000; i++) {
os_unfair_lock_lock(unfairLock);
self.intSource = self.intSource + 1;
os_unfair_lock_unlock(unfairLock);
}
});
}

总结

通过学习属性的原子性,对系统中锁的理解又加深,包括自旋锁,互斥锁,读写锁等。

本来都以为实现是自旋锁了,还好留了个心眼多看了一层才发现最终实现还是互斥锁。这件事也给我一个小教训,查阅源码还是要刨根问底,只浮于表面的话,可能得不到想要的真相。

引用

可以编译的runtime库

不再安全的 OSSpinLock

Atomic原子操作原理剖析的更多相关文章

  1. java线程:Atomic(原子的)

    一.何谓Atomic? Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位.计算机中的Atomic是指不能分割成若干部分的意思.如果一段代码被认为是Atomic,则表示这段代码在执行过程中 ...

  2. java线程:Atomic(原子)

    .何谓Atomic? Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位.计算机中的Atomic是指不能分割成若干部分的意思.如果一段代码被认为是Atomic,则表示这段代码在执行过程中, ...

  3. 第31课 std::atomic原子变量

    一. std::atomic_flag和std::atomic (一)std::atomic_flag 1. std::atomic_flag是一个bool类型的原子变量,它有两个状态set和clea ...

  4. atomic 原子自增工程用法案例

    案例 1 : 简单用法 atomic_int id; atomic_fetch_add(&id, 1) atomic_uint id; atomic_fetch_add(&id, 1) ...

  5. Java原子类操作原理剖析

    ◆CAS的概念◆ 对于并发控制来说,使用锁是一种悲观的策略.它总是假设每次请求都会产生冲突,如果多个线程请求同一个资源,则使用锁宁可牺牲性能也要保证线程安全.而无锁则是比较乐观的看待这个问题,它会假设 ...

  6. CompareAndSwap原子操作原理

    在翻阅AQS(AbstractQueuedSynchronizer)类的过程中,发现其进行原子操作的时候采用的是CAS.涉及的代码如下: 1: private static final Unsafe ...

  7. Spark- 优化后的 shuffle 操作原理剖析

    在spark新版本中,引入了 consolidation 机制,也就是说提出了ShuffleGroup的概念.一个 ShuffleMapTask 将数据写入 ResultTask 数量的本地文本,这个 ...

  8. 一篇文章快速搞懂 Atomic(原子整数/CAS/ABA/原子引用/原子数组/LongAdder)

    前言 相信大部分开发人员,或多或少都看过或写过并发编程的代码.并发关键字除了Synchronized,还有另一大分支Atomic.如果大家没听过没用过先看基础篇,如果听过用过,请滑至底部看进阶篇,深入 ...

  9. C++11 并发指南六( <atomic> 类型详解二 std::atomic )

    C++11 并发指南六(atomic 类型详解一 atomic_flag 介绍)  一文介绍了 C++11 中最简单的原子类型 std::atomic_flag,但是 std::atomic_flag ...

随机推荐

  1. ubuntu将python3设为默认后再安装支持python3.x的包

    简介: ubuntu默认python2.7版本,如果想要装python3.x版本,请记住python2.7版本一定不能卸载!!!但是即使我 python3.x版本安装成功,当运行python脚本时,系 ...

  2. centos7.2+php7.2+nginx1.12.0+mysql5.7配置

    一. 源码安装php7.2 选择需要的php版本 从 php官网: http://cn2.php.net/downloads.php 选择需要的php版本,选择.tar.gz 的下载包,点击进入,选择 ...

  3. 传递命令行参数示例代码 (C 和 Python)

    C语言 在 C 语言中, 使用 main 函数的输入参数 argc 和 argv 传入命令行参数. argc 为 int 类型, 表示传入命令行参数的个数 (argument count); argv ...

  4. 在 Azure 中备份 Linux 虚拟机

    可以通过定期创建备份来保护数据. Azure 备份可创建恢复点,这些恢复点存储在异地冗余的恢复保管库中. 从恢复点还原时,可以还原整个 VM,或只是还原特定的文件. 本文介绍如何将单个文件还原到运行 ...

  5. 如何在首次启动 Linux 虚拟机时对其进行自定义

    在前面的教程中,你已学习如何通过 SSH 连接到虚拟机 (VM) 并手动安装 NGINX. 若要以快速一致的方式创建 VM,通常需要某种形式的自动化. 在首次启动 VM 时实现自定义的常见方法是使用  ...

  6. ExpressRoute 线路和路由域

    你必须订购一条 ExpressRoute 线路 ,以通过连接提供商将你的本地基础结构连接到 Azure.下图提供了你的 WAN 与 Azure 之间的连接的逻辑表示形式. ExpressRoute 线 ...

  7. Oracle 补丁那些事儿(PS、PSU、CPU、SPU、BP、DBBP…)

    当前ORACLE数据库提供两种方式的补丁一种是主动的Proactive Patches和另一种被动的Reactive Patches,其中Reactive Patches是指过去的ONE-OFF Pa ...

  8. linux centos5.8装yum安装mysql

     默认的yum安装mysql都是5.1版本的 想要安装5.7的可以进行配置rpm包进行, mysql5.7安装路径 下面是默认的5.1安装路径 首先我们在使用yum安装的的时候会默认使用最新安装的,最 ...

  9. SQL Server 常用数据类型

    char:    固定长度,存储ANSI字符,不足的补英文半角空格. varchar:  可变长度,存储ANSI字符,根据数据长度自动变化. nchar:   固定长度存储Unicode字符,汉字英文 ...

  10. TreeMap:是基于红黑树的Map接口的实现

    > TreeMap:是基于红黑树的Map接口的实现. 红黑树:平衡二叉树 取出时,可以有三种方式:前序遍历,中序遍历,后序遍历 >排序: A 自然排序  --TreeMap无参构造 Tre ...