题解

这题还要判无解真是难受……

我们发现我们肯定能确定1的位置,1左右的两个区间是同理的可以确定出最小值的位置

我们把区间最小值看成给一个区间+1,构建出笛卡尔树,就求出了每一次取最小值和最小值左右的区间大小

然后就相当于左右子树的排列方式,乘上把左右子树那么多个元素选出左子树个数和右子树个数那么多的方案数,是个普通的组合数

判无解从根开始,要求根的区间是[1,N],左右区间是[1,rt-1][rt + 1,R]递归判下去就好

复杂度\(O(n)\)

但是跑得奇慢无比= =,我脑子一抽把数组改成两倍居然过了。。。卡着时限过的。。。不想写fread(懒.jpg)

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 2000005
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 1000000007; int N;
int L[MAXN],R[MAXN],S[MAXN],fac[MAXN],inv[MAXN],invfac[MAXN],lc[MAXN],rc[MAXN],rt;
int sta[MAXN],top;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int C(int n,int m) {
if(n < m) return 0;
return mul(mul(fac[n],invfac[m]),invfac[n - m]);
}
bool check(int u,int fa,int l,int r) {
if(!u && l <= r) return false;
else if(!u) return true;
if(L[u] != l || R[u] != r) return false;
if(S[u] == fa + 1) {
return check(lc[u],S[u],l,u - 1) && check(rc[u],S[u],u + 1,r);
}
else return false;
}
int dfs(int u,int L,int R) {
if(!u) return 1;
return mul(mul(dfs(lc[u],L,u - 1),dfs(rc[u],u + 1,R)),C(R - L,u - L));
}
void Init() {
for(int i = 1 ; i <= N ; ++i) {lc[i] = rc[i] = 0;S[i] = 0;read(L[i]);}
for(int i = 1 ; i <= N ; ++i) {read(R[i]);S[L[i]]++;S[R[i] + 1]--;}
top = 0;int k;
for(int i = 1 ; i <= N ; ++i) {
S[i] += S[i - 1];
if(S[i] == 1) {rt = i;}
k = top;
while(k >= 1 && S[sta[k]] > S[i]) --k;
if(k + 1 <= top) lc[i] = sta[k + 1];
if(k) rc[sta[k]] = i;
top = k;
sta[++top] = i;
}
}
void Solve() {
if(!check(rt,0,1,N)) {out(0);enter;return;}
out(dfs(rt,1,N));enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
int cnt = 0;
fac[0] = 1;
for(int i = 1 ; i <= 1000000 ; ++i) fac[i] = mul(fac[i - 1],i);
inv[0] = inv[1] = 1;
for(int i = 2 ; i <= 1000000 ; ++i) inv[i] = mul(inv[MOD % i],MOD - MOD / i);
invfac[0] = 1;
for(int i = 1 ; i <= 1000000 ; ++i) invfac[i] = mul(invfac[i - 1],inv[i]);
while(scanf("%d",&N) != EOF) {
++cnt;
printf("Case #%d: ",cnt);
Init();
Solve();
}
}

不能再颓了!还有34天就NOI了!

时间太慢了,但是我又怕它太快了

【51nod】1934 受限制的排列的更多相关文章

  1. 51nod 1934 受限制的排列——笛卡尔树

    题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1934 根据给出的信息,可以递归地把笛卡尔树建出来.一个点只应该有 0/1/2 ...

  2. 51NOD 1934:受限制的排列——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1934 听说会笛卡尔树的人这题都秒了啊…… 参考:https://blog ...

  3. 51nod1934:受限制的排列 (分治+组合数)

    对于一个  11 到  nn 的排列  p1,p2,⋯,pnp1,p2,⋯,pn ,我们可以轻松地对于任意的  1≤i≤n1≤i≤n 计算出  (li,ri)(li,ri) ,使得对于任意的  1≤L ...

  4. 51nod 1296 有限制的排列(DP)

    对于一个i,如果要比邻居大,那么i比i-1大,i+1比i小,比邻居小同理.设v[i]=0表示i与i-1的关系无限制,v[i]=1表示a[i-1]>a[i],v[i]=2表示a[i-1]<a ...

  5. 胡小兔的OI日志3 完结版

    胡小兔的 OI 日志 3 (2017.9.1 ~ 2017.10.11) 标签: 日记 查看最新 2017-09-02 51nod 1378 夹克老爷的愤怒 | 树形DP 夹克老爷逢三抽一之后,由于采 ...

  6. 51nod 1364 最大字典序排列(线段树)

    1364 最大字典序排列基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个1至N的排列,允许你做不超过K次操作,每次操作可以将相邻的两个数交换,问能够得到的字 ...

  7. 51nod 1020 逆序排列

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020 题意: 思路: 一开始用了三重循环... 设f(n,k)表示n个数 ...

  8. 51Nod 1250 排列与交换

    Description 统计 \(1...n\) 的排列,恰好进行 \(k\) 次相邻交换和至多进行 \(k\) 次交换生成的不同的序列个数. Sol DP. 好妙的题啊... 首先看第一个问题. 对 ...

  9. 51nod 1020 逆序排列 DP

    在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序.一个排列中逆序的总数就称为这个排列的逆序数. 如2 4 3 1中,2 1,4 3,4 1,3 1是逆序 ...

随机推荐

  1. ICPC 2015 Shenyang Online-E-EXCITED DATAbase

    题目描述 She says that any Pavarotti among the nightingales will serenade his mate while she sits on her ...

  2. openwrt的sysupgrade和factory固件的区别

    openwrt的固件一般分两种类型:factory原厂固件.sysupgrade固件 factory多了一些验证的东西,用于在原厂固件的基础上进行升级. 普通家用路由一般不是openwrt固件,如果要 ...

  3. Javascript 常用的工具函数,更新中...

    1.时间戳转为格式化时间 /** * 时间戳转为格式化时间 * @Author chenjun * @DateTime 2017-11-10 * @param {[date]} timestamp [ ...

  4. 如何定制Gtk版Emacs的Widget外观

    当我们使用 xlib 版的Emacs时,可以通过 XResource 定义 Emacs 的菜单 栏.工具条.滚动条的外观. 现在,在Linux上我们大多使用 gtk版的Emacs,是否还有办法定义 E ...

  5. seq与Shell序列生成

    有时候可能有这样的需要:用Shell生成类似0001这样的序列作为批次号,这里整理了一下个人的方法 方法一:通过seq命令 seq命令可以生成从某个数字到递增到另一数字的序列.用法如下: # seq ...

  6. python——脚本和print

    脚本和print 1.脚本文件 <Python 基础教程>(第二版)中 P118页,原操作为下: 1 _metaclass_ = type 2 3 class Person: 4 def ...

  7. 我应该记录一下我不太了解的一些c语言函数

    当然,现在还不分类 fmemopen getpagesize()

  8. 【codeforces】【比赛题解】#854 CF Round #433 (Div.2)

    cf一如既往挺丧 看丧题点我! [A]分数 Petya是数学迷,特别是有关于分数的数学.最近他学了所谓一个分数被叫做“真分数”当且仅当其分子小于分母,而一个分数被叫做“最简分数”当且仅当其分子分母互质 ...

  9. XSS练习小游戏和答案参考

    源码:https://files.cnblogs.com/files/Eleven-Liu/xss%E7%BB%83%E4%B9%A0%E5%B0%8F%E6%B8%B8%E6%88%8F.zip 感 ...

  10. Shell-help格式详解

    前言 linux shell命令通常可以通过-h或--help来打印帮助说明,或者通过man命令来查看帮助,有时候我们也会给自己的程序写简单的帮助说明,其实帮助说明格式是有规律可循的 帮助示例 下面是 ...