nowcoder 203J Graph Coloring I(dfs)
澜澜不服气,在黑板上画了一个三个点的完全图。修修跟澜澜说,这个图我能找到一个简单奇环。
澜澜又在黑板上画了一个n个点m条边的无向连通图。很可惜这不是一道数数题,修修做不出来了。
澜澜非常得意,作为一位毒瘤出题人,有了好题当然要跟大家分享,于是他把这道题出给你做了。
保证图连通,并且不存在重边和自环。
如果你能找到一个简单奇环,第一行输出环长k,第二行输出k个整数
如果两种情况都是可行的,你只需要输出任意一种。
如果两种情况都是不可行的,请输出一行一个整数-1。
1 2
1 3
0 1 1
1 2
1 3
2 3
1 2 3
总的来说,没有奇数环,则涂色一定成功,有奇数环,则输出奇数环,不会有两种都不满足的情况。
#include <stdio.h>
#include<vector>
typedef std::vector<int> Vi;
#define maxn 300005
//链式存边
int fst[maxn], to[maxn << ], nxt[maxn << ], z = ;
void add(int u, int v) {
z++; to[z] = v;
nxt[z] = fst[u]; fst[u] = z;
z++; to[z] = u;
nxt[z] = fst[v]; fst[v] = z;
} int n, m;
int clr[maxn];
Vi rt;
int isodd/*是奇数环的标记*/,
rat/*涂色矛盾发生的地方,也就是奇数环的起点/终点*/,
ended/*完成了环的记录*/;
//直接涂色
void dfs(int cid) {
int nid;
for (int ln = fst[cid]; ln; ln = nxt[ln]) {
nid = to[ln];
if (clr[nid] == -) {
clr[nid] = !clr[cid];
dfs(nid);
if (ended)return;
if (isodd) {
rt.push_back(nid);
if (cid == rat)//已经回退到环的起点
ended = ;
return;
}
}
else if (clr[nid] == clr[cid]) {//遇到矛盾,开始回退
rat = nid;
rt.push_back(nid);
isodd = ; ended = ;
return;
}
}
} int main() {
scanf("%d %d", &n, &m);
for (int i = ; i <= n; ++i)clr[i] = -;
int ai, bi;
for (int i = ; i<m; ++i) {
scanf("%d%d", &ai, &bi);
add(ai, bi);
}
clr[] = ;
dfs();
if (isodd == ) {
printf("0\n");
for (int i = ; i <= n; ++i)printf("%d ", clr[i]);
}
else {
int sz = rt.size();
//环可能会重复记录起点,去掉就好了
if (rt[sz - ] == rt[])sz--;
printf("%d\n", sz);
for (int i = ; i<sz; ++i)printf("%d ", rt[i]);
}
}
nowcoder 203J Graph Coloring I(dfs)的更多相关文章
- GPS-Graph Processing System Graph Coloring算法分析 (三)
HamaWhite 原创,转载请注明出处!欢迎大家增加Giraph 技术交流群: 228591158 Graph coloring is the problem of assignin ...
- 【算法导论】图的深度优先搜索遍历(DFS)
关于图的存储在上一篇文章中已经讲述,在这里不在赘述.下面我们介绍图的深度优先搜索遍历(DFS). 深度优先搜索遍历实在访问了顶点vi后,访问vi的一个邻接点vj:访问vj之后,又访问vj的一个邻接点, ...
- 深度优先搜索(DFS)与广度优先搜索(BFS)的Java实现
1.基础部分 在图中实现最基本的操作之一就是搜索从一个指定顶点可以到达哪些顶点,比如从武汉出发的高铁可以到达哪些城市,一些城市可以直达,一些城市不能直达.现在有一份全国高铁模拟图,要从某个城市(顶点) ...
- 图的 储存 深度优先(DFS)广度优先(BFS)遍历
图遍历的概念: 从图中某顶点出发访遍图中每个顶点,且每个顶点仅访问一次,此过程称为图的遍历(Traversing Graph).图的遍历算法是求解图的连通性问题.拓扑排序和求关键路径等算法的基础.图的 ...
- 图的深度优先遍历算法(DFS)
搜索算法有很多种,本次文章主要分享图(无向图)的深度优先算法.深度优先算法(DFS)主要是应用于搜索中,早期是在爬虫中使用.其主要的思想有如下: 1.先访问一个节点v,然后标记为已被访问过2.找到第一 ...
- LeetCode Subsets II (DFS)
题意: 给一个集合,有n个可能相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: 看这个就差不多了.LEETCODE SUBSETS (DFS) class Solution { publ ...
- LeetCode Subsets (DFS)
题意: 给一个集合,有n个互不相同的元素,求出所有的子集(包括空集,但是不能重复). 思路: DFS方法:由于集合中的元素是不可能出现相同的,所以不用解决相同的元素而导致重复统计. class Sol ...
- HDU 2553 N皇后问题(dfs)
N皇后问题 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description 在 ...
- 深搜(DFS)广搜(BFS)详解
图的深搜与广搜 一.介绍: p { margin-bottom: 0.25cm; direction: ltr; line-height: 120%; text-align: justify; orp ...
随机推荐
- jquery validate 使用示例
var el = { $jsFrom: $('.js-form'), }; // 检测用户名是否存在 jQuery.validator.addMethod("isexist", f ...
- 【ASP.NET Core】运行原理(2):启动WebHost
本系列将分析ASP.NET Core运行原理 [ASP.NET Core]运行原理[1]:创建WebHost [ASP.NET Core]运行原理[2]:启动WebHost [ASP.NET Core ...
- druid之监控设置及问题小记
druid是什么注不再赘述了.想了解直接参见 https://github.com/alibaba/druid/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98 本文 ...
- java多线程系列(一)---多线程技能
java多线程技能 前言:本系列将从零开始讲解java多线程相关的技术,内容参考于<java多线程核心技术>与<java并发编程实战>等相关资料,希望站在巨人的肩膀上,再通过我 ...
- 大同世界的Java 和.NET 开发
1.作为一个科班出生的根正苗红的软件开发人员,我认为现在的一群年轻的程序员总是在讨论JAVA 好还是.NET 好的同时,我作为一个做4年开发的.NET 程序员中间穿插了1年JAVA 开发的来说更加的 ...
- pytest使用笔记(二)——pytest+allure配置使用
使用环境及预置条件 开发工具:pycharm 操作系统:win10 开发语言:python3.6 使用库:pytest4.0,pytest-allure-adaptor 注意不要安装allure-py ...
- 防csrf详解
CSRF概念:CSRF跨站点请求伪造(Cross—Site Request Forgery),跟XSS攻击一样,存在巨大的危害性,你可以这样来理解: 攻击者盗用了你的身份,以你的名义发送恶 ...
- 基于神念TGAM的脑波小车(2)
将数据处理移植到STM32上,采用串口的DMA接收模式,注意的是DMA_MODE采用Circular,DMA_BufferSize>(8*512+36=4132)(小包8个字节,每秒512个,完 ...
- Gitlab CI-2.CI流程
参考文档: GitLab Documentation:https://docs.gitlab.com/ce/ Installation and Configuration using omnibus ...
- 10.openldap备份与恢复
备份方式 一.使用slapcat指令备份 使用slapcat备份后的数据 经过相关无用条目处理,即可实现数据上的条目备份 备份指令如下 #备份 #slapcat -v -l openldap-back ...