3875: [Ahoi2014]骑士游戏

题目连接:

http://www.lydsy.com/JudgeOnline/problem.php?id=3875

Description

【故事背景】

长期的宅男生活中,JYY又挖掘出了一款RPG游戏。在这个游戏中JYY会

扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽。

【问题描述】

在这个游戏中,JYY一共有两种攻击方式,一种是普通攻击,一种是法术攻

击。两种攻击方式都会消耗JYY一些体力。采用普通攻击进攻怪兽并不能把怪兽彻底杀死,怪兽的尸体可以变出其他一些新的怪兽,注意一个怪兽可能经过若干次普通攻击后变回一个或更多同样的怪兽;而采用法术攻击则可以彻底将一个怪兽杀死。当然了,一般来说,相比普通攻击,法术攻击会消耗更多的体力值(但由于游戏系统bug,并不保证这一点)。

游戏世界中一共有N种不同的怪兽,分别由1到N编号,现在1号怪兽入

侵村庄了,JYY想知道,最少花费多少体力值才能将所有村庄中的怪兽全部杀死呢?

Input

第一行包含一个整数N。

接下来N行,每行描述一个怪兽的信息;

其中第i行包含若干个整数,前三个整数为Si,Ki和Ri,表示对于i号怪兽,

普通攻击需要消耗Si的体力,法术攻击需要消耗Ki的体力,同时i号怪兽死亡后会产生Ri个新的怪兽。表示一个新出现的怪兽编号。同一编号的怪兽可以出现多个。

Output

输出一行一个整数,表示最少需要的体力值。

Sample Input

4

4 27 3 2 3 2

3 5 1 2

1 13 2 4 2

5 6 1 2

Sample Output

26

Hint

【样例说明】

首先用消耗4点体力用普通攻击,然后出现的怪兽编号是2,2和3。花费

10点体力用法术攻击杀死两个编号为2的怪兽。剩下3号怪兽花费1点体力进

行普通攻击。此时村庄里的怪兽编号是2和4。最后花费11点体力用法术攻击

将这两只怪兽彻底杀死。一共花费的体力是4+5+5+1+5+6=26。

【数据范围】

2<=N<=2105,1<=Ri,Sigma(Ri)<=106,1<=Ki,Si<=510^14

题意

题解:

dp[i]表示消灭i怪兽所需要的最小代价

dp[i]=min(dp[i],s[i]+sigmadp[v])

这个我们就用spfa去转移就好了。

直接暴力松弛。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+7;
vector<int> E[maxn];
vector<int> E2[maxn];
long long dp[maxn],s[maxn],k[maxn],dp2[maxn];
int r[maxn],n,inq[maxn];
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld%lld%d",&s[i],&k[i],&r[i]);
for(int j=1;j<=r[i];j++){
int x;scanf("%d",&x);
E[i].push_back(x);
E2[x].push_back(i);
}
}
for(int i=1;i<=n;i++)
dp[i]=k[i];
queue<int>Q;
for(int i=1;i<=n;i++)Q.push(i),inq[i]=1;
while(!Q.empty()){
int now = Q.front();
Q.pop();long long sp = s[now];
inq[now]=0;
for(int i=0;i<E[now].size();i++){
sp+=dp[E[now][i]];
}
if(sp>=dp[now])continue;
dp[now]=sp;
for(int i=0;i<E2[now].size();i++){
if(!inq[E2[now][i]]){
Q.push(E2[now][i]);
inq[E2[now][i]]=1;
}
}
}
cout<<dp[1]<<endl;
}

BZOJ 3875: [Ahoi2014]骑士游戏 spfa dp的更多相关文章

  1. BZOJ 3875: [Ahoi2014]骑士游戏 dp+spfa

    题目链接: 题目 3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec Memory Limit: 256 MB 问题描述 [故事背景] 长期的宅男生活中,JYY又挖掘出了一 ...

  2. BZOJ 3875: [Ahoi2014]骑士游戏

    d[i]表示消灭i所需的最小体力值, d[i] = min(S[i], K[i]+Σd[x]), Σd[x]表示普通攻击而产生的其他怪兽. 因为不是DAG, 所以用个队列类似SPFA来更新答案. -- ...

  3. 【BZOJ3875】【AHOI2014】骑士游戏 [Spfa][DP]

    骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在这个游戏中,JYY一共有两种攻击 ...

  4. LUOGU P4042 [AHOI2014/JSOI2014]骑士游戏 (spfa+dp)

    传送门 解题思路 首先设\(f[x]\)表示消灭\(x\)的最小花费,那么转移方程就是 \(f[x]=min(f[x],\sum f[son[x]] +s[x])\),如果这个转移是一个有向无环图,那 ...

  5. [bzoj3875] [Ahoi2014]骑士游戏

    3875: [Ahoi2014]骑士游戏 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 844  Solved: 440[Submit][Status ...

  6. 【BZOJ3875】[Ahoi2014&Jsoi2014]骑士游戏 SPFA优化DP

    [BZOJ3875][Ahoi2014&Jsoi2014]骑士游戏 Description  [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会扮演一个英勇的 ...

  7. bzoj3875 【Ahoi2014】骑士游戏 spfa处理后效性动规

    骑士游戏 [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,JYY一共有两种攻 ...

  8. [BZOJ3875][AHOI2014]骑士游戏(松弛操作)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3875 分析: 类似于spfa求最短路,设d[i]表示完全消灭i号怪物的最小花费,我们对 ...

  9. bzoj 3875: [Ahoi2014&Jsoi2014]骑士游戏【dp+spfa】

    设f[i]为杀死i的最小代价,显然\( f[i]=min(k[i],s[i]+\sum f[to]) \) 但是这个东西有后效性,所以我们使用spfa来做,具体就是每更新一个f[i],就把能被它更新的 ...

随机推荐

  1. Kettle进行数据迁移(ETL)

    由于开发新的系统,需要将之前一个老的C/S应用的数据按照新的数据设计导入到新库中.此过程可能涉及到表结构不一致.大数据量(千万级,甚至上亿)等情况,包括异构数据的抽取.清洗等等工作.部分复杂的工作需要 ...

  2. SPOJ 16549 - QTREE6 - Query on a tree VI 「一种维护树上颜色连通块的操作」

    题意 有操作 $0$ $u$:询问有多少个节点 $v$ 满足路径 $u$ 到 $v$ 上所有节点(包括)都拥有相同的颜色$1$ $u$:翻转 $u$ 的颜色 题解 直接用一个 $LCT$ 去暴力删边连 ...

  3. torchvision简介

    安装pytorch时,torchvision独立于torch.torchvision包由流行的数据集(torchvision.datasets).模型架构(torchvision.models)和用于 ...

  4. 01 Go 1.1 Release Notes

    Go 1.1 Release Notes Introduction to Go 1.1 Changes to the language Integer division by zero Surroga ...

  5. 安装virtualenv(Scrapy)

    Windows 10家庭中文版,Python 3.6.4, virtualenv用来提供一个应用程序独立的 运行环境,这个独立是相对于系统的Python运行环境而言,开发者可以在virtualenv建 ...

  6. Motan

    https://github.com/weibocom/motan/wiki/zh_userguide http://www.cnblogs.com/mantu/p/5885996.html(源码分析 ...

  7. QUnit 实践一

    项目准备启用Qunit, 先来尝试一下. 不说废话,上代码: <!DOCTYPE HTML> <html> <head> <meta http-equiv=& ...

  8. Python 文件IO

    Python 文件I/O 打印到屏幕 最简单的输出方法是用print语句,你可以给它传递零个或多个用逗号隔开的表达式.此函数把你传递的表达式转换成一个字符串表达式,并将结果写到标准输出如下: #!/u ...

  9. git —— Feature分支

    添加新功能时,新建feature分支 分支上开发完成后,再进行合并.最后删除feature分支 $ git checkout -b feature-vulcan 开发完毕后,切换回添加的分支,进行合并 ...

  10. css同时满足两个类名才有效果的写法

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...