2004: 追梦之人

描述

题目描述:

为了纪念追梦人,粉丝们创造了一种新的数——“追梦数”。追梦数要满足以下两个条件:
1、数字中不能出现“7”
2、不能被7整除。
比如:777和4396就不是追梦数,而666是追梦数。现在他们想知道,1到N中有多少个追梦数。

输入:

多组数据。
第一行给出一个正整数T。T为数据组数。
接下来T行,每行包括一个正整数N。
(1 \leq T \leq 10001≤T≤1000) 
(1 \leq N \leq 10^{18}1≤N≤1018)

输出:

对于每组数据,在单独的一行中输出一个整数表示1到N中有多少个追梦数。

样例输入
4
10
14
17
100
样例输出
9
12
14
70

当初石乐志要维护三个东西,后来发觉数位只要维护两个东西就好了。
我们的答案是n-被7整除的数-不被7整除但包含7的数。
被7整除的数n/7即可求出。
后面这个写个数位dp即可。
dpi[k]表示长度为i,膜7的余数为j,是否含7的情况为k(k为0表示不含,为1表示含)的数的数量,考虑当前的第i位为x,之前的i-1位组成的数膜7的余数为y,那么dpi+=dpi-1。如果x不是7,那么k应该是0转移到0,1转移到1;如果x是7,那么都转移到k=1。剩下的就是裸的数位dp了。
注意边界。

 #include<bits/stdc++.h>
#define clr(x) memset(x,0,sizeof(x))
#define clr_1(x) memset(x,-1,sizeof(x))
#define mod 7
#define LL long long
#define INF 0x3f3f3f3f
#define mp make_pair
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
const int N=1e5+;
LL all[][][],num[];
void init()
{
all[][][]=;
num[]=;
for(int i=;i<=;i++)
num[i]=(num[i-]*)%mod;
for(int i=;i<=;i++)
for(int j=;j<=;j++)
for(int k=;k<;k++)
if(j!=)
{
all[i][(int)(j*num[i]%mod+k)%mod][]+=all[i-][k][];
all[i][(int)(j*num[i]%mod+k)%mod][]+=all[i-][k][];
}
else
all[i][(int)(j*num[i]%mod+k)%mod][]+=all[i-][k][]+all[i-][k][];
}
LL n,m,k;
LL ans;
int a[N],t,now;
bool flag;
int T;
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
ans=n-n/;
m=;
n++;
while(n)
{
a[++m]=n%;
n/=;
}
now=;
flag=;
for(int i=m;i>=;i--)
{
for(int j=;j<a[i];j++)
{
for(int k=;k<mod;k++)
if((j*num[i]%mod+k+now)%mod!=)
{
ans-=all[i-][k][];
if(flag || j==mod)
ans-=all[i-][k][];
}
}
now=(now+a[i]*num[i])%mod;
if(a[i]==mod)
flag=;
}
printf("%lld\n",ans);
}
}

NEUQ OJ 2004:追梦之人 (计数数位dp)的更多相关文章

  1. 【BZOJ-1833】count数字计数 数位DP

    1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 2494  Solved: 1101[Submit][ ...

  2. bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)

    1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...

  3. 【题解】P2602 数字计数 - 数位dp

    P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...

  4. 目标管理剖析与实践– 献给追梦的人 (转)

      好久没写日志了. 最近总算在忙碌的日子中小小的松了一口气, 过来补起这几个月的空缺. 上次写的Cover Letter & Resume 重点诠释 - 深度剖析没想到居然超过了一万的阅读量 ...

  5. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  6. 洛谷P2602 [ZJOI2010]数字计数(数位dp)

    数字计数 题目传送门 解题思路 用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数. 则转移方程式为:\(dp[i][j][k] += \sum_{t ...

  7. 【BZOJ1833】【ZJOI2010】数字计数 数位DP

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  8. BZOJ 1833 ZJOI2010 count 数字计数 数位DP

    题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...

  9. [Swust OJ 715]--字典序问题(组合数预处理/数位dp)

    题目链接:http://acm.swust.edu.cn/problem/715/ Time limit(ms): 1000 Memory limit(kb): 65535   在数据加密和数据压缩中 ...

随机推荐

  1. [转]程序进行性能分析工具gprof使用入门

    性能分析工具 软件的性能是软件质量的重要考察点,不论是在线服务程序还是离线程序,甚至是终端应用,性能都是用户体验的关键.这里说的性能重大的范畴来讲包括了性能和稳定性两个方面,我们在做软件测试的时候也是 ...

  2. Servlet笔记5--设置欢迎页面及HTTP状态码404、500

    欢迎页面: 代码详解: web.xml配置文件: <?xml version="1.0" encoding="UTF-8"?> <web-ap ...

  3. PL/SQ连接oracle,L 新建表的时候, virtual那一列是什么意思

    Virtual标示该栏位是否为虚拟列. https://www.2cto.com/database/201306/216917.html

  4. TreeCollection2

    Tree Collection 2 Table of Contents Introduction Structure Interfaces Data Node structure Tree struc ...

  5. Golang实现mysql读库映射成Map【Easy】

    这个类库灵感来源于.net的dbHelper类,因为其简单易用,现在go的driver必须使用对象映射,这让人火大不爽,不能实现灵活的Map,在Key经常变动的业务场景里面非常不爽,我还是喜欢直接写s ...

  6. Codeforces Round #504 D. Array Restoration

    Codeforces Round #504 D. Array Restoration 题目描述:有一个长度为\(n\)的序列\(a\),有\(q\)次操作,第\(i\)次选择一个区间,将区间里的数全部 ...

  7. CNN细节

    1.各层作用 输入层 输入层是整个神经网络的输入,一般代表的是图片的像素矩阵(一般为三维矩阵,即像素x像素x通道) 卷积层 每一层卷积都会提取数据特征,再经过组合和抽象形成更高阶的特征. 池化层 保留 ...

  8. Codeforces 225C Barcode(矩阵上DP)

    题目链接:http://codeforces.com/contest/225/problem/C 题目大意: 给出一个矩阵,只有两种字符'.'和'#',问最少修改多少个点才能让每一列的字符一致,且字符 ...

  9. babel转换不了有些es6

    bable只转换新语法 不支持新的全局变量如promise async等等,可以使用babel-polyfilll来兼容

  10. AOP实战(1)

    AOP在MVC中有广泛的应用 如:IActionFilter. IAuthenticationFilter. IAuthorizationFilter.IExceptionFilter.IResult ...