Sky Soldiers

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 559    Accepted Submission(s): 181

Problem Description
An airplane carried k soldiers with parachute is plan to let these soldiers jump off the plane along a straight air route. The landing point of these soldiers is undetermined because of various weather conditions. However, the statisticians
of the army can analysis the probability of landing in a certain place through landing history records. To make it simple, the statistician suggests that these sky soldiers will land on finite discrete points of a straight line.



This mission plans to place m provisions for the soldiers on the line for landing. These soldiers will be informed the direction of the nearest provision point by a special device after landing, and then walk to the point. The manager of this mission is asking
you for help: to determine m points for provisions so that the expected sum of walking distance should be minimized. You can put provisions on any point of the landing line.
 
Input
There are multiple test cases. For each case, the first line contains two integers k and m (1 ≤ k ≤ 1,000, 1 ≤ m ≤ 50), which represent the number of sky soldiers and the number of positions to place provisions separately.



The following k lines contain descriptions of landing parameters for the soldiers numbered from 1 to k. Each description consists of an integer L followed by L pairs of (x, p), which indicates that the probability of the soldier's landing on integer coordination
x is p. It is guaranteed that all the p values are positive real numbers, and the sum of p in a single line is exactly 1. The same x may appear more than once on the same line which you should simply add up all the probability p of the pairs with equal x.

The number of places on which all the soldiers could land is no more than 1000 and it can not be less than m.

The input ends with k=m=0.
 
Output
For each test case, output a line containing only one real number which indicates the minimum expected sum of distance these soldiers will move and should be rounded to two digits after the decimal point.
 
Sample Input
2 1
2 0 0.5 1 0.5
2 1 0.1 3 0.9
0 0
 
Sample Output
2.30
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  5053 5052 5051 5050 5049 
 

题意:

n个伞兵。落地后。每一个伞兵可能会落在若干个点上点都在x轴上。落在每一个点都有一个概率。如今在x轴上建立m个基地,每一个伞兵走到近期的基地。确定基地建立的地点使得全部伞兵所走的路程总和的期望最小。

思路:

乍一看像期望dp。细致思考后能够发现这是一个区间DP。如果一个伞兵落在x点。那么他走的路程的期望为p1*|x1-x|+p2*|x2-x|....*pm*|xm-x|。所以我们能够把n个伞兵等价成一个伞兵。

然后它到一个点的概率为全部伞兵到那点的概率总和。那如今就能够写出状态了。dp[i][j]表示在前i个位置建j个基地。

该等效伞兵走的路程的最小期望。那么这题就类似poj 1160
Post Office
那题了。转移方程为dp[i][j]=dp[k][j-1]+cost[k+1][i]。k<i。

cost[i][j]表示在i,j之间建一个基地且该基地负责集合[i,j]上的伞兵。

所走距离的期望。如今重点怎么高速算cost[i][j]了。考虑我们在算cost[j][i]的时候。随着j的减小基地的最优位置cur要么前移要么不变。所以我们就能够在O(n^2)的时间复杂度下算出了。

具体见代码:

#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<map>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1010;
typedef long long ll;
struct node
{
int x;
double p;
} po[maxn];
map<int,double> mp;
map<int,double>::iterator it;
int n,m;
double dp[maxn][55],cost[maxn][maxn];
int main()
{
int k,i,j,l,x,cur,dis;
double p,lp,rp,cl,cr,tp; while(scanf("%d%d",&k,&m),k||m)
{
mp.clear();
for(i=0;i<k;i++)
{
scanf("%d",&l);
while(l--)
{
scanf("%d%lf",&x,&p);
mp[x]+=p;
}
}
n=0;
for(it=mp.begin();it!=mp.end();it++)
{
po[++n].x=it->first;
po[n].p=it->second;
}
for(i=n;i>=1;i--)
{
cost[i][i]=0;
cur=i;
rp=po[i].p;
lp=0;
cl=cr=0;
for(j=i-1;j>=1;j--)
{
dis=po[cur].x-po[j].x;
cl+=dis*po[j].p;//重心位置左边的期望和
lp+=po[j].p;//重心位置左边的概率和cr,rp为重心位置右边相应值
tp=cl+cr;//总期望
while(cur>1&&rp-lp<0)
{
dis=po[cur].x-po[cur-1].x;
cr+=dis*rp;
cl-=dis*lp;
cur--;
rp+=po[cur].p;
lp-=po[cur].p;
tp=cl+cr;
}
cost[j][i]=tp;
//printf("%d->%d tp %lf\n",j,i,tp);
}
}
for(i=0;i<=m;i++)
dp[i][i]=0;
for(i=1;i<=n;i++)
dp[i][0]=1e15;
for(j=1;j<=m;j++)
{
for(i=j;i<=n;i++)
{
tp=1e15;
for(k=j-1;k<i;k++)
tp=min(tp,dp[k][j-1]+cost[k+1][i]);
dp[i][j]=tp;
}
}
printf("%.2lf\n",dp[n][m]);
}
return 0;
}

hdu 4412 Sky Soldiers(区间DP)的更多相关文章

  1. hdu 4412 Sky Soldiers DP

    动态规划,主要是用单调性求区间的最小期望. 代码如下: #include<iostream> #include<stdio.h> #include<algorithm&g ...

  2. HDU 5115 Dire Wolf 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5115 Dire Wolf Time Limit: 5000/5000 MS (Java/Others ...

  3. HDU 5693 D Game 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5693 题解: 一种朴实的想法是枚举选择可以删除的两个或三个数(其他的大于三的数都能凑成2和3的和), ...

  4. hdu 4597 Play Game 区间dp

    Play Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=459 ...

  5. 【HDOJ】4412 Sky Soldiers

    1. 题目描述有$k$个伞兵跳伞,有$m$个汇点.当伞兵着陆后,需要走向离他最近的汇点.如何选择这$m$个结点,可以使得士兵最终行走的距离的期望最小.求这个最小的期望. 2. 基本思路假设已经选好了这 ...

  6. hdu 6049---Sdjpx Is Happy(区间DP+枚举)

    题目链接 Problem Description Sdjpx is a powful man,he controls a big country.There are n soldiers number ...

  7. hdu 5693 && LightOj 1422 区间DP

    hdu 5693 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5693 等差数列当划分细了后只用比较2个或者3个数就可以了,因为大于3的数都可以由2和3 ...

  8. hdu 4745 Two Rabbits 区间DP

    http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有两只兔子Tom Jerry, 他们在一个用石头围城的环形的路上跳, Tom只能顺时针跳,Jerr ...

  9. hdu 5181 numbers——思路+区间DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...

随机推荐

  1. Ext.Toolbar.Fill()

    tbar : ['-',new Ext.form.Label({ text : '产品代码:' }),new Ext.form.TextField({ id : 'cpdm', name : 'cpd ...

  2. 聊聊高并发(十四)理解Java中的管程,条件队列,Condition以及实现一个堵塞队列

    这篇里面有一些主要的概念,理解概念是件有意义的事情,仅仅有理解概念才干在面对详细问题的时候找到正确的解决思路.先看一下管程的概念 第一次在书上看到管程这个中文名称认为非常迷糊,管程究竟是个什么东东,于 ...

  3. Eclipse设置打印线

    在调出Preferences之后,选中Text Editors.先选中Show print margin,在Print margin column框中填入180就可以,然后选择以下的Print mar ...

  4. remotepath != null 与 !TextUtils.isEmpty(remotepath) 的差别

    remotepath != null   与 !TextUtils.isEmpty(remotepath) 的差别 !TextUtils.isEmpty(remotepath)    与   remo ...

  5. JavaScript 触发click事件 兼容FireFox,IE 和 Chrome

    解决了火狐下无法触发click事件的问题 <script language="javascript"> function test2(name) { if(docume ...

  6. 《趣学Python编程》

    <趣学Python编程> 基本信息 作者: (美)Jason Briggs 译者: 尹哲 出版社:人民邮电出版社 ISBN:9787115335951 上架时间:2014-2-21 出版日 ...

  7. hdu1166 敌兵布阵(线段树 求区间和 更新点)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  8. require.js 最佳实践

    require.js是一个js库,相关的基础知识,前面转载了两篇博文:Javascript模块化编程(require.js), Javascript模块化工具require.js教程,RequireJ ...

  9. 请教如何改善C#中socket通信机客户端程序的健壮性

    我是做Socket的新手,最近做了一个Socket客户端程序,连接Server的时候,如果server存在,并且允许连接的话,程序无错,正常执行:但是如果Server不存在,或者拒绝连接,程序就会卡住 ...

  10. Redis自学笔记–Zset类型及管理简述

    Zset类型                                                                                               ...