【CF739E】Gosha is hunting(动态规划,凸优化)

题面

洛谷

CF

题解

一个\(O(n^3)\)的\(dp\)很容易写出来。

我们设\(f[i][a][b]\)表示前\(i\)个怪,两种球用了\(a,b\)个的最大期望,

直接用概率转移就好了。然而这样子会TLE飞。

发现可以凸优化,对于其中一个球给它二分一个权值,表示每使用一次就需要额外花费掉这么多的权值,同时不再限制使用的个数。

然后忽略这一个限制,做\(dp\),利用最优解使用的这种球的个数以及限制个数继续二分。

两维都可以这么做,复杂度\(O(nlog^2)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 2020
#define eps 1e-8
#define cmax(x,y) (x=(x<y?y:x))
double p[MAX],u[MAX];
double f[MAX],fa[MAX],fb[MAX];
int n,a,b;
void Calc(double w1,double w2)
{
for(int i=1;i<=n;++i)
{
f[i]=f[i-1];fa[i]=fa[i-1];fb[i]=fb[i-1];
if(f[i-1]+p[i]-w1>f[i])
f[i]=f[i-1]+p[i]-w1,fa[i]=fa[i-1]+1,fb[i]=fb[i-1];
if(f[i-1]+u[i]-w2>f[i])
f[i]=f[i-1]+u[i]-w2,fa[i]=fa[i-1],fb[i]=fb[i-1]+1;
if(f[i-1]+p[i]+u[i]-p[i]*u[i]-w1-w2>f[i])
f[i]=f[i-1]+p[i]+u[i]-p[i]*u[i]-w1-w2,fa[i]=fa[i-1]+1,fb[i]=fb[i-1]+1;
}
}
int main()
{
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;++i)scanf("%lf",&p[i]);
for(int i=1;i<=n;++i)scanf("%lf",&u[i]);
double l1=0,r1=1,l2,r2;
while(l1+eps<=r1)
{
double mid1=(l1+r1)/2;
l2=0;r2=1;
while(l2+eps<=r2)
{
double mid2=(l2+r2)/2;
Calc(mid1,mid2);
if(fb[n]>b)l2=mid2;else r2=mid2;
}
Calc(mid1,r2);
if(fa[n]>a)l1=mid1;else r1=mid1;
}
Calc(r1,r2);
printf("%.6lf\n",f[n]+a*r1+b*r2);
return 0;
}

【CF739E】Gosha is hunting(动态规划,凸优化)的更多相关文章

  1. CF739E Gosha is hunting(费用流/凸优化dp)

    纪念合格考爆炸. 其实这个题之前就写过博客了,qwq但是不小心弄丢了,所以今天来补一下. 首先,一看到球的个数的限制,不难相当用网络流的流量来限制每个球使用的数量. 由于涉及到最大化期望,所以要使用最 ...

  2. CF739E Gosha is hunting

    法一: 匹配问题,网络流! 最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]? 连二次!所以i到T流1费0流1费-p[i]*u[i] 最大流由 ...

  3. CF739E Gosha is hunting 【WQS二分 + 期望】

    题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i] ...

  4. HZOJ 赤(CF739E Gosha is hunting)

    本来没有打算写题解的,时间有点紧.但是这个wqs二分看了好久才明白还是写点东西吧. 题解就直接粘dg的了: 赤(red) 本题来自codeforces 739E,加大了数据范围. 首先对一只猫不会扔两 ...

  5. CF739E Gosha is hunting DP+wqs二分

    我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...

  6. CF739E Gosha is hunting(费用流,期望)

    根据期望的线性性答案就是捕捉每一只精灵的概率之和. 捕捉一只精灵的方案如下: 1.使用一个\(A\)精灵球,贡献为\(A[i]\) 2.使用一个\(B\)精灵球,贡献为\(B[i]\) 3.使用一个\ ...

  7. 2019.03.12 codeforces739E. Gosha is hunting(dp凸优化)

    传送门 题意:nnn个物品,有aaa个XXX道具和bbb个YYY道具,XXX道具移走第iii个物品概率为pip_ipi​,YYY道具移走第iii个道具概率为uiu_iui​. 对于每个物品每种道具最多 ...

  8. 【CF739E】Gosha is hunting 贪心

    [CF739E]Gosha is hunting 题意:有n个小精灵,你有a个普通球和b个超级球,用普通球抓住第i只小精灵的概率为$A_i$,用超级球抓住第i只小精灵的概率为$u_i$.你必须一开始就 ...

  9. 【BZOJ1150】数据备份(动态规划,凸优化)

    [BZOJ1150]数据备份(动态规划,凸优化) 题面 BZOJ 洛谷 题解 在不考虑\(K\)的情况下很容易\(dp\) 如果把\(K\)考虑进状态显然是\(O(n^2)\)级别. 所以凸优化一下即 ...

随机推荐

  1. c语言数字图像处理(八):噪声模型及均值滤波器

    图像退化/复原过程模型 高斯噪声 PDF(概率密度函数) 生成高斯随机数序列 算法可参考<http://www.doc.ic.ac.uk/~wl/papers/07/csur07dt.pdf&g ...

  2. linux_connect_mysql

    原文来自 https://www.cnblogs.com/lywy510/p/3615710.html #include <stdio.h> #include <stdlib.h&g ...

  3. 安装VMware-tools时,一直停在“The path "" is not valid path to the gcc binary.”

    解决方案: 1.先停止安装(ctrl+Z) 2.在终端输入: yum -y update yum -y install kernel-headers kernel-devel gcc 3.重新安装VM ...

  4. SICP读书笔记 3.2

    SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...

  5. docker 安装vim

    执行以下命令 apt-get update apt-get install vim

  6. 关于MySql8.X设置允许root远程登陆的问题

    这是最近在mac上使用mysql workbench上遇到的一个小问题,仔细想了想其实这个问题本身就有毛病,论起正式环境来哪家公司是直接使用root去远程登录的呢?恐怕没几个,so不纠结root了创建 ...

  7. 后端程序员必备的Linux基础知识

    我自己总结的Java学习的系统知识点以及面试问题,目前已经开源,会一直完善下去,欢迎建议和指导欢迎Star: https://github.com/Snailclimb/Java-Guide > ...

  8. 自制session

    原理 1.面向对象中通过索引的方式访问对象,需要内部实现 __getitem__ .__delitem__.__setitem__方法 2.Tornado框架中,默认执行Handler的get/pos ...

  9. LeetCode 566. Reshape the Matrix (C++)

    题目: In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a n ...

  10. (第六周)课上Scrum站立会议演示

    组名:连连看 组长:张政 组员:张金生.李权.武志远 时间:2016.10.13   20:20——20:40 会议内容: 已完成的内容: 1.选定编译语言,安装软件并配置环境,完成了游戏的基本模型. ...