【CF739E】Gosha is hunting(动态规划,凸优化)

题面

洛谷

CF

题解

一个\(O(n^3)\)的\(dp\)很容易写出来。

我们设\(f[i][a][b]\)表示前\(i\)个怪,两种球用了\(a,b\)个的最大期望,

直接用概率转移就好了。然而这样子会TLE飞。

发现可以凸优化,对于其中一个球给它二分一个权值,表示每使用一次就需要额外花费掉这么多的权值,同时不再限制使用的个数。

然后忽略这一个限制,做\(dp\),利用最优解使用的这种球的个数以及限制个数继续二分。

两维都可以这么做,复杂度\(O(nlog^2)\)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 2020
#define eps 1e-8
#define cmax(x,y) (x=(x<y?y:x))
double p[MAX],u[MAX];
double f[MAX],fa[MAX],fb[MAX];
int n,a,b;
void Calc(double w1,double w2)
{
for(int i=1;i<=n;++i)
{
f[i]=f[i-1];fa[i]=fa[i-1];fb[i]=fb[i-1];
if(f[i-1]+p[i]-w1>f[i])
f[i]=f[i-1]+p[i]-w1,fa[i]=fa[i-1]+1,fb[i]=fb[i-1];
if(f[i-1]+u[i]-w2>f[i])
f[i]=f[i-1]+u[i]-w2,fa[i]=fa[i-1],fb[i]=fb[i-1]+1;
if(f[i-1]+p[i]+u[i]-p[i]*u[i]-w1-w2>f[i])
f[i]=f[i-1]+p[i]+u[i]-p[i]*u[i]-w1-w2,fa[i]=fa[i-1]+1,fb[i]=fb[i-1]+1;
}
}
int main()
{
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;++i)scanf("%lf",&p[i]);
for(int i=1;i<=n;++i)scanf("%lf",&u[i]);
double l1=0,r1=1,l2,r2;
while(l1+eps<=r1)
{
double mid1=(l1+r1)/2;
l2=0;r2=1;
while(l2+eps<=r2)
{
double mid2=(l2+r2)/2;
Calc(mid1,mid2);
if(fb[n]>b)l2=mid2;else r2=mid2;
}
Calc(mid1,r2);
if(fa[n]>a)l1=mid1;else r1=mid1;
}
Calc(r1,r2);
printf("%.6lf\n",f[n]+a*r1+b*r2);
return 0;
}

【CF739E】Gosha is hunting(动态规划,凸优化)的更多相关文章

  1. CF739E Gosha is hunting(费用流/凸优化dp)

    纪念合格考爆炸. 其实这个题之前就写过博客了,qwq但是不小心弄丢了,所以今天来补一下. 首先,一看到球的个数的限制,不难相当用网络流的流量来限制每个球使用的数量. 由于涉及到最大化期望,所以要使用最 ...

  2. CF739E Gosha is hunting

    法一: 匹配问题,网络流! 最大费用最大流,S到A,B流a/b费0,A,B到i流1费p[i]/u[i],同时选择再减p[i]*u[i]? 连二次!所以i到T流1费0流1费-p[i]*u[i] 最大流由 ...

  3. CF739E Gosha is hunting 【WQS二分 + 期望】

    题目链接 CF739E 题解 抓住个数的期望即为概率之和 使用\(A\)的期望为\(p[i]\) 使用\(B\)的期望为\(u[i]\) 都使用的期望为\(p[i] + u[i] - u[i]p[i] ...

  4. HZOJ 赤(CF739E Gosha is hunting)

    本来没有打算写题解的,时间有点紧.但是这个wqs二分看了好久才明白还是写点东西吧. 题解就直接粘dg的了: 赤(red) 本题来自codeforces 739E,加大了数据范围. 首先对一只猫不会扔两 ...

  5. CF739E Gosha is hunting DP+wqs二分

    我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...

  6. CF739E Gosha is hunting(费用流,期望)

    根据期望的线性性答案就是捕捉每一只精灵的概率之和. 捕捉一只精灵的方案如下: 1.使用一个\(A\)精灵球,贡献为\(A[i]\) 2.使用一个\(B\)精灵球,贡献为\(B[i]\) 3.使用一个\ ...

  7. 2019.03.12 codeforces739E. Gosha is hunting(dp凸优化)

    传送门 题意:nnn个物品,有aaa个XXX道具和bbb个YYY道具,XXX道具移走第iii个物品概率为pip_ipi​,YYY道具移走第iii个道具概率为uiu_iui​. 对于每个物品每种道具最多 ...

  8. 【CF739E】Gosha is hunting 贪心

    [CF739E]Gosha is hunting 题意:有n个小精灵,你有a个普通球和b个超级球,用普通球抓住第i只小精灵的概率为$A_i$,用超级球抓住第i只小精灵的概率为$u_i$.你必须一开始就 ...

  9. 【BZOJ1150】数据备份(动态规划,凸优化)

    [BZOJ1150]数据备份(动态规划,凸优化) 题面 BZOJ 洛谷 题解 在不考虑\(K\)的情况下很容易\(dp\) 如果把\(K\)考虑进状态显然是\(O(n^2)\)级别. 所以凸优化一下即 ...

随机推荐

  1. [Unity3D]MonoDeveloper快捷键(补全代码补全引用中文乱码tab转空格)

    Hello亲爱的观众朋友们大家好,我是09. vs支持各种插件,一般推荐用vs.不过总有人(例如我)由于各种原因用MonoDeveloper.苦于每次上网找各种设置,此处集中写下我用MonoDevel ...

  2. virtualbox命令行启动虚拟机和关闭虚拟机

    C:\Program Files\Oracle\VirtualBox\VBoxManage.exe startvm 虚拟机名字 --type headlessC:\Program Files\Orac ...

  3. windows docker 安装cloudera/quickstart

    最近需要写一个大数据的项目,但是公司没有测试环境,真是cao蛋,没办法,只能自己搭建一个测试环境,所以就在本地电脑装一个cloudera/quickstart,这个是一个单节点的大数据平台, 是clo ...

  4. dmesg命令详解

    基础命令学习目录 http://linux.cn/article-3587-1.html dmesg 命令的使用范例 下面我们展示一些最负盛名的‘dmesg’命令工具以及其实际使用举例.‘dmesg’ ...

  5. springboot通过http访问——修改访问的端口号

    文章转载来于:https://blog.csdn.net/zknxx/article/details/53433592 有时候我们可能需要启动不止一个SpringBoot,而SpringBoot默认的 ...

  6. React Native iOS 离线包

    平时使用React Native 时候, js代码和图片资源运行在一个Debug Server上(需要cd 到RN目录,然后终端执行 npm start 命令开启本地服务 ).每次更新代码之后只需要使 ...

  7. UVALive 6467 Strahler Order(拓扑序列)

    In geology, a river system can be represented as a directed graph. Each river segment is an edge; wi ...

  8. Java试验四

    北京电子科技学院(BESTI) 实  验  报  告 课程: Java        班级:1352          姓名:朱国庆         学号:20135237 成绩:           ...

  9. 实验一linux 系统简介和实验二基本概念及操作

    作业 zy e

  10. Java 面试 --- 3

    上一篇,我们给出了大概35个题目,都是基础知识,有童鞋反映题目过时了,其实不然,这些是基础中的基础,但是也是必不可少的,面试题目中还是有一些基础题目的,我们本着先易后难的原则,逐渐给出不同级别的题目, ...