一直在读《陶哲轩实分析》,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了。所以就又找了本柯朗的《微积分与数学分析》搭配着看。柯朗的书的习题与陶的风格完全不同,里面有大量的考察技巧性的习题,有些题相当有难度,第一卷又没有提供习题答案。我试着解了一小部分习题,放到这里,供有需要的同学参考。能力有限,有些题确实搞不定,有些题给的答案可能是错的。所以仅供参考。

柯朗微积分与数学分析习题选解(1.1 节 e)

第四题

两个正数 a ,b 的调和平均值 ε 定义为:

1ε=12(1a+1b)

试证明调和平均值不超过几何平均值。ε≤ab−−√ 试问两平均值何时相等。

a+b≥2ab−−√a+bab≥2ab−−√12(1a+1b)≥1ab−−√1ε≥1ab−−√ε≤ab−−√

当 a=b 时两平均值相等。

第五题

试导出下列不等式

(a) x2+y2+xy≥0

x2+y2+xy=(x+12y)2+34y2≥0

(b)x2n+x2n−1y+x2n−2y2+⋯+y2n≥0

当 x≠y 时,有

x2n+x2n−1y+x2n−2y2+⋯+y2n=x2n+1−y2n+1x−y>0

当 x=y 时,有

x2n+x2n−1y+x2n−2y2+⋯+y2n=(2n+1)x2n≥0

只有 x=y=0 时

x2n+x2n−1y+x2n−2y2+⋯+y2n=0

(c) x4+3x3+4x2−3x+1≥0

x4+3x3+4x2−3x+1=(x2+32x−1)2+15x44>0

x 取任何值等号都不会成立。

第六题

6 考虑两个向量 A=(a1,a2,a3) 和 B=(b1,b2,b3)

那么有

|A||B|≥|AB|

展开后就是

a21+a22+a23−−−−−−−−−−√b21+b22+b23−−−−−−−−−√≥|a1b1+a2b2+a3b3|

两边平方:

(a21+a22+a23)2(b21+b22+b23)2≥(a1b1+a2b2+a3b3)2

第九题

(a) a2+b2+c2≥ab+bc+ac

a2+b2+c2=12(a2+b2)+12(a2+c2)+12(b2+c2)≥ab+bc+ac

(b) (a+b)(b+c)(c+a)≥8abc

(a+b)(b+c)(c+a)=a2b+ab2+a2c+2abc+b2c+ac2+bc2≥2abc+6a2b×ab2×a2c×b2c×ac2×bc2−−−−−−−−−−−−−−−−−−−−−−−−−−√6=8abc

(c) a2b2+b2c2+a2c2≥abc(a+b+c)

a2b2+b2c2+a2c2=12(a2b2+b2c2)+12(a2b2+a2c2)+12(a2c2+b2c2)≥abc(a+b+c)

第十题

a11x21+a12x1x2+⋯+a33x23≥≥≥(a11+a12+a21+a31+a132)x21+(a11+a12+a21+a32+a232)x22+(a11+a32+a23+a31+a132)x233M(x21+x22+x23)3M

第十一题

∑i=1n(ai−bi)2=∑i=1na2i+∑i=1nb2i−2∑i=1n(aibi)≤∑i=1na2i+∑i=1nb2i+2∑i=1na2i−−−−−√∑i=1nb2i−−−−−√=⎛⎝∑i=1na2i−−−−−√+∑i=1nb2i−−−−−√⎞⎠2

所以:

∑i=1n(ai−bi)2−−−−−−−−−−√≤∑i=1na2i−−−−−√+∑i=1nb2i−−−−−√

n≤3 时表示的是三角形一边的边长小于另外两边边长之和。

第十二题

因为:

∑i=1naibi≤∑i=1na2i−−−−−√∑i=1nb2i−−−−−√∑i=1naici≤∑i=1na2i−−−−−√∑i=1nc2i−−−−−√⋯∑i=1naizi≤∑i=1na2i−−−−−√∑i=1nz2i−−−−−√⋯∑i=1nyizi≤∑i=1ny2i−−−−−√∑i=1nb2i−−−−−√

所以:

∑i=1naibi+⋯+∑i=1nyizi≤∑i=1na2i−−−−−√∑i=1nb2i−−−−−√+⋯+∑i=1ny2i−−−−−√∑i=1nz2i−−−−−√

所以:

∑i=1na2i+⋯+∑i=1nz2i+2(∑i=1naibi+⋯+∑i=1nyizi)≤∑i=1na2i+⋯+∑i=1nz2i+2⎛⎝∑i=1na2i−−−−−√∑i=1nb2i−−−−−√+⋯+∑i=1ny2i−−−−−√∑i=1nz2i−−−−−√⎞⎠

所以:

(a1+⋯+z1)2+⋯+(an+⋯+zn)2≤(a21+⋯+a2n−−−−−−−−−−√+⋯+z21+⋯+z2n−−−−−−−−−−√)2

所以:

(a1+⋯+z1)2+⋯+(an+⋯+zn)2−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−√≤a21+⋯+a2n−−−−−−−−−−√+⋯+z21+⋯+z2n−−−−−−−−−−√

第十三题

这道题以前做过,解答过程在这里。

http://blog.csdn.net/liyuanbhu/article/details/47057393

柯朗微积分与数学分析习题选解(1.1 节 e)的更多相关文章

  1. 柯朗微积分与数学分析习题选解(1.2 节 d)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  2. 柯朗微积分与数学分析习题选解(1.3 节 c)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  3. 柯朗微积分与数学分析习题选解(1.3 节 b)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  4. 柯朗微积分与数学分析习题选解(1.1 节 a)

    一直在读<陶哲轩实分析>,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了.所以就又找了本柯朗的<微积分与数学分析>搭配着看.柯朗的书的习题与陶 ...

  5. CDA考试 ▏2017 CDA L1备考资源习题详解-统计基础部分

    CDA考试 ▏2017 CDA L1备考资源习题详解-统计基础部分 <CDA LEVEL 1描述性分析典型例题讲解> 主讲人:CDA命题组委会 傅老师 ▏2017 CDA L1备考资源习题 ...

  6. C程序设计语言(第二版)--- 习题选

    1. 解: 2. 解: 3. (分析的好有条理啊!) 4. 解:

  7. 【原创】《算法导论》链表一章带星习题试解——附C语言实现

    原题: 双向链表中,需要三个基本数据,一个携带具体数据,一个携带指向上一环节的prev指针,一个携带指向下一环节的next指针.请改写双向链表,仅用一个指针np实现双向链表的功能.定义np为next ...

  8. 线性结构之习题选讲-ReversingLinkedList

    目录 一.什么是抽象的链表 二.单链表的逆转 三.测试数据 3.1 边界测试 更新.更全的<数据结构与算法>的更新网站,更有python.go.人工智能教学等着你:https://www. ...

  9. - > 并查集详解(第二节)

    以下是并查集思路详解: 一:概念 并查集处理的是“集合"之间的关系.当给出两个元素的一个无序数对(a,b)时,需要快速“合并”a和b分别所在的集合,这期间需要反复“查找”某元素所在的集合.“ ...

随机推荐

  1. Oracle EBS AP 供应商地点失效

    /* 供应商地点失效 creation: created by jenrry 20161108 1.00 */ DECLARE lv_return_status ) := NULL; ln_msg_c ...

  2. 《鸟哥的Linux私房菜》Chapter11 20180726~20180806

    目录 1.认识Bash这个shell 1.1.硬件.核心与shell 1.2.系统的合法shell和/etc/shells功能 1.3.Bash shell的功能 1.3.1.命令修编功能 1.3.2 ...

  3. 模板与STL学习简单的笔记

    一.如何进行泛型编程 C/C++是一种静态编程语言,必须需要把代码翻译成可执行的二进制可执行程序然后再运行,一旦编译好之后就不能再变了(数据类型也就必须确定下无法更改,因此要为每一种数据类型编写一份算 ...

  4. c# 托管和非托管的介绍

    在.net 编程环境中,系统的资源分为托管资源和非托管资源. 对于托管的资源的回收工作,是不需要人工干预回收的,而且你也无法干预他们的回收,所能够做的 只是了解.net CLR如何做这些操作.也就是说 ...

  5. 使用ModelForm表单验证

    1.定义model.py model中定义的字段类型,只有在通过form进行验证的时候才有效,数据库中的字段类型与其并不完全一致,如数据库中并没有ipaddress类型.如果不通过form对字段进行验 ...

  6. 解决win 和 ubuntu 虚拟机之间 无法 复制粘贴的问题,以及重装vmtool后,还是无法解决的办法

    第一步:重新安装vmware-tool 我这里已经装过了,所以显示这个,不然应该是显示:安装 VMware Tools 它会打开一个文件夹,把压缩包复制到任一个地方解压,执行.pl的那个文件:sudo ...

  7. November 30th 2016 Week 49th Wednesday

    Your attitude, not your aptitude, will determine your altitude. 决定你人生高度的,不是你的才能,而是你的态度. Basically, I ...

  8. XtraEditors一、总体介绍

    一.所有编辑器的公共功能 全部都可以绑定数据: 全部都可以独立使用或用于由 Developer Express 提供的容器控件 (XtraGrid.XtraVerticalGrid.XtraTreeL ...

  9. c++ thread 使用不当导致的崩溃问题

    看个例子 class CTimer{ public: // 析构函数 virtual ~CTimer(){ } // 开始 void start() { b_exit = false; i = ; t ...

  10. 我对git的快速使用和理解

    收藏较好的,分享给大家 https://mp.weixin.qq.com/s/k4tU8snvssyKJ2WkvkFrZA