铺砖头问题(完美)——爆搜&&插头DP
题意
给定一个 $n \times m$ 的格子,每个格子被染成了黑色或白色。现在要用 $1 \times 2$ 的砖块覆盖这些格子,要求块与块之间互不重叠,且覆盖了所有白色的格子,但不覆盖任意黑色格子。求一共有多少种覆盖方法。结果对 $M$ 取余。($1 \leq n\leq 15, 1 \leq m\leq 15$)
分析
爆搜,从最左上方开始放置,从左至右,从上到下,每找到一种方案返回1.
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int mod = ; int n, m;
const int maxn = +;
bool color[maxn][maxn]; //false为白,true为黑
bool used[maxn][maxn]; int rec(int i, int j)
{
if(j == m) return rec(i+, ); //进入下一行
if(i == n) return ; //已经覆盖所有空格
if(used[i][j] || color[i][j]) return rec(i, j+); //不需要在(i, j) 上放置砖块 //尝试2种放法
int res = ;
used[i][j] = true; //横着放
if(j+ < m && !used[i][j+] &&!color[i][j+])
{
used[i][j+] = true;
res += rec(i, j);
used[i][j+] = false;
}
//竖着放
if(i+ < n && !used[i+][j] && !color[i+][j])
{
used[i+][j] = true;
res += rec(i, j+);
used[i+][j] = false;
} used[i][j] = false;
return res % mod;
} int main()
{
//init color
scanf("%d%d", &n, &m);
printf("%d,", rec(, ));
}
}
这个方法的时间复杂度为 $O($nm\cdot 2^{nm})$,会超时。也无法使用记忆化搜索。
但是仔细思考会发现,实际参数并没有这个多种可能。
不确定的只有每一列里还没有查询的格子种的最上面的一个,共 $m$ 个。从而可以把这 $m$ 个格子通过状态压缩编码进行记忆化搜索,复杂度为 $O(nm\cdot 2^{m})$.
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int mod = ; int n, m;
const int maxn = +;
const int M = ;
bool color[maxn][maxn]; //false为白,true为黑 int dp[][ << maxn]; void solve()
{
int* crt = dp[], *nxt = dp[];
crt[] = ;
for(int i = n-;i >= ;i--)
for(int j = m-;j >= ;j--)
{
for(int used = ; used < ( << m); used++)
{
if((used >> j & ) || color[i][j])
nxt[used] = crt[used & ~( << j)]; //不需要在(i, j)放置砖块
else
{
//尝试2种放法
int res = ;
if(j+ < m && !((used >> (j+)) & ) && !color[i][j+]) //横着放
res += crt[used | ( << (j+))];
if(i+ < n && !color[i+][j])
res += crt[used | ( << j)]; //竖着放
nxt[used] = res % M;
}
}
swap(crt, nxt);
}
printf("%d\n", crt[]);
} int main()
{
//init color
scanf("%d%d", &n, &m);
solve();
}
From:《挑战程序设计竞赛》
铺砖头问题(完美)——爆搜&&插头DP的更多相关文章
- BZOJ 1207: [HNOI2004]打鼹鼠【妥妥的n^2爆搜,dp】
1207: [HNOI2004]打鼹鼠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3259 Solved: 1564[Submit][Statu ...
- 【BZOJ-1853&2393】幸运数字&Cirno的完美算数教室 容斥原理 + 爆搜 + 剪枝
1853: [Scoi2010]幸运数字 Time Limit: 2 Sec Memory Limit: 64 MBSubmit: 1817 Solved: 665[Submit][Status] ...
- 51nod 1989 竞赛表格 (爆搜+DP算方案)
题意 自己看 分析 其实统计出现次数与出现在矩阵的那个位置无关.所以我们定义f(i)f(i)f(i)表示iii的出现次数.那么就有转移方程式f(i)=1+∑j+rev(j)=if(j)f(i)=1+\ ...
- POJ 2411 Mondriaan's Dream ——状压DP 插头DP
[题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...
- 插头DP(基于连通性状态压缩的动态规划问题)(让你从入门到绝望)
今天,我,Monkey king 又为大家带来大(ju)佬(ruo)的算法啦!--插头DP 例题(菜OJ上的网址:http://caioj.cn/problem.php?id=1489): 那么,这道 ...
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
- 插头DP专题
建议入门的人先看cd琦的<基于连通性状态压缩的动态规划问题>.事半功倍. 插头DP其实是比较久以前听说的一个东西,当初是水了几道水题,最近打算温习一下,顺便看下能否入门之类. 插头DP建议 ...
- bzoj 2331: [SCOI2011]地板 插头DP
2331: [SCOI2011]地板 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 541 Solved: 239[Submit][Status] D ...
- [入门向选讲] 插头DP:从零概念到入门 (例题:HDU1693 COGS1283 BZOJ2310 BZOJ2331)
转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7326874.html 最近搞了一下插头DP的基础知识……这真的是一种很锻炼人的题型…… 每一道题的状态都不一样 ...
随机推荐
- SQL Server 系统库的备份与恢复
master数据库 master作为数据库的主要数据库,记录着SQL Server系统的所有系统级信息,例如登录用户.系统配置设置.端点和凭证以及访问其他数据服务器所需要的信息.master数据库还记 ...
- 用easyui实现查询条件的后端传递并自动刷新表格的两种方法
用easyui实现查询条件的后端传递并自动刷新表格的两种方法 搜索框如下: 通过datagrid的load方法直接传递参数并自动刷新表格 通过ajax的post函数传递参数并通过loadData方法将 ...
- 53 容器(八)——TreeMap 红黑树
红黑树是比较难以理解的一种数据结构.它能从10亿数据中进行10几次比较就能查找到需要的数据.效率非常高. 理解起内部结构也难. 现阶段我们知道有这种东西就行了. 参考文章: https://www.j ...
- 大数据之路【第十四篇】:数据挖掘--推荐算法(Mahout工具)
数据挖掘---推荐算法(Mahout工具) 一.简介 Apache顶级项目(2010.4) Hadoop上的开源机器学习库 可伸缩扩展的 Java库 推荐引擎(协同过滤).聚类和分类 二.机器学习介绍 ...
- 学java必须知道的那些queue
队列是我们学java必须接触到的知识,很多内容都和它相关,但是你真的了解它们的概念和使用方法吗?在本文,你可以获取关于queue的一切信息,希望我能够帮助你在java的学习道路上乘风破浪. 概念 队列 ...
- Oracle Round 函式 (四捨五入)
Oracle Round 函式 (四捨五入)描述 : 傳回一個數值,該數值是按照指定的小數位元數進行四捨五入運算的結果.SELECT ROUND( number, [ decimal_places ] ...
- GitLab+Jenkins持续集成
一.概述 GitLab是一个代码仓库,用来管理代码.Jenkins是一个自动化服务器,可以运行各种自动化构建.测试或部署任务.所以这两者结合起来,就可以实现开发者提交代码到GitLab,Jenkins ...
- python_socket (套接字)
socket是计算机网络通信的基本的技术之一.如今大多数基于网络的软件,如浏览器,即时通讯工具甚至是P2P下载都是基于Socket实现的. 网络上两个程序通过一个双向的通信连接实现数据的交换,这个连接 ...
- python罗列oss文件
# 列举文件 import oss2 from itertools import islice AccessKeyId = "your accesskeyid" AccessKey ...
- linux搭建GitLab
GitLab CentOS6 1. 安装VMware和CentOS 2. 安装必备Linux插件 3. 准备安装GitLab 4. 开始安装GitLab 5. 配置GitLab 6. 启动GitLab ...