CF472G Increase the Constraints
Increase the Constraints
定义两个等长的01字符串的汉明距离为它们字符不同的对应位置的个数。
给你两个01串S,T,现在有q个询问,每次指定S,T中两个定长的子串询问它们的汉明距离。
1≤|S|,|T|≤200000,1≤q≤400000
cz_xuyixuan的题解
字符不同=长度-字符相同。考虑到两个字符串的匹配问题可以用FFT处理,于是往FFT方面考虑。
分块FFT,令分块大小为B,进行O(\(\frac{n}{B}\))次FFT,处理出O(\(\frac{n}{B}\))个T的后缀与S的每个后缀能够匹配的位数。询问时容斥一下并加上边角暴力就好了。
这样的时间复杂度是O(\(\frac{n^2\log n}{B}\)+qB),取B=n\(\sqrt{\frac{\log n}{q}}\)=1,327.013205时,可以获得渐进意义下最优复杂度O(n\(\sqrt{q log n}\))。
有一种高妙的做法来解决01匹配问题。我们令0为1,1为-1,然后FFT。那么两个字符如果匹配,得数为1,否则为-1。我们给1和-1的总和加上长度,那么就变成了匹配得2,不匹配得0.
由于NTT常数大,所以程序取B=7200。
CO int N=524288;
int rev[N],omg[N];
void NTT(int a[],int lim,int dir){
for(int i=0;i<lim;++i)
if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=1;i<lim;i<<=1)
for(int j=0;j<lim;j+=i<<1)
for(int k=0;k<i;++k){
int t=mul(omg[lim/(i<<1)*k],a[j+i+k]);
a[j+i+k]=add(a[j+k],mod-t),a[j+k]=add(a[j+k],t);
}
if(dir==-1){
int ilim=fpow(lim,mod-2);
for(int i=0;i<lim;++i) a[i]=mul(a[i],ilim);
}
}
CO int B=7200;
char s[N],t[N];int ls,lt;
int index[N],l[N],r[N],tot;
int a[N],b[N],ans[N/B][N];
int query(int ps,int pt){
int ans=0;
if(ps+B>=ls or pt+B>=lt){
for(;ps<ls and pt<lt;++ps,++pt) ans+=s[ps]==t[pt];
return ans;
}
for(;index[pt]==index[pt-1];++ps,++pt) ans+=s[ps]==t[pt];
ans+=::ans[index[pt]][ps];
return ans;
}
int main(){
scanf("%s%s",s,t);
ls=strlen(s),lt=strlen(t);
for(int i=0;i<lt;++i){
if(i%B==0) l[++tot]=i;
index[i]=tot,r[tot]=i;
}
for(int p=1;p<=tot;++p){
memset(a,0,sizeof a);
for(int i=0;i<ls;++i) a[i]=s[i]=='0'?1:mod-1;
memset(b,0,sizeof b);
for(int i=l[p];i<lt;++i) b[lt-1-i]=t[i]=='0'?1:mod-1;
int n=lt-l[p]-1;
int len=ceil(log2(ls+n)),lim=1<<len;
for(int i=0;i<lim;++i) rev[i]=rev[i>>1]>>1|(i&1)<<(len-1);
omg[0]=1,omg[1]=fpow(3,(mod-1)/lim);
for(int i=2;i<lim;++i) omg[i]=mul(omg[i-1],omg[1]);
NTT(a,lim,1),NTT(b,lim,1);
for(int i=0;i<lim;++i) a[i]=mul(a[i],b[i]);
omg[1]=fpow(omg[1],mod-2);
for(int i=2;i<lim;++i) omg[i]=mul(omg[i-1],omg[1]);
NTT(a,lim,-1);
for(int i=0;i<ls;++i){
ans[p][i]=add(a[i+n],add(n+1,mod-max(0,i+n-ls+1))); // edit 1
ans[p][i]=mul(ans[p][i],i2);
}
}
for(int q=read<int>();q--;){
int ps=read<int>(),pt=read<int>(),n=read<int>();
printf("%d\n",n-query(ps,pt)+query(ps+n,pt+n));
}
return 0;
}
处理ans数组的时候还是要放到模意义下,因为1和-1的总和可能为负数。
CF472G Increase the Constraints的更多相关文章
- 【CF472G】Design Tutorial: Increase the Constraints
Description 给出两个01序列\(A\)和\(B\) 要求回答\(q\)个询问每次询问\(A\)和\(B\)中两个长度为\(len\)的子串的哈明距离 哈明距离的值即有多少个位置不相等 ...
- cf 472G Design Tutorial: Increase the Constraints 分块+压位/FFT
题目大意 给出两个\(01\)序列\(A\)和\(B\) 哈明距离定义为两个长度相同的序列中,有多少个对应位置上的数字不一样 "00111" 和 "10101" ...
- CF数据结构练习
1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...
- Propagation of Visual Entity Properties Under Bandwidth Constraints
1. Introduction The Saga of Ryzom is a persistent massively-multiplayer online game (MMORPG) release ...
- iOS Programming Auto Layout: Programmatic Constraints 自动布局:通过编程限制
iOS Programming Auto Layout: Programmatic Constraints 1. However, if your views are created in co ...
- States of Integrity Constraints
States of Integrity Constraints As part of constraint definition, you can specify how and when Oracl ...
- Go build constraints
Go语言有一个不(奇)错(葩)的设计,就是build constraints(构建约束).可以在源码中通过注释的方式指定编译选项,比如只允许在linux下,或者在386的平台上编译啊之类的:还可以通过 ...
- Unable to simultaneously satisfy constraints.
在进行版本的迭代更新时,新功能需求需要对主页面的UI进行重新的布局,但是,报了错误,出了好多约束方面的问题: Unable to simultaneously satisfy constraints. ...
- Drop all the tables, stored procedures, triggers, constraints and all the dependencies in one SQL statement
Is there any way in which I can clean a database in SQl Server 2005 by dropping all the tables and d ...
随机推荐
- AKKA Inbox收件箱
起因 得到ActorRef就可以给actor发送消息,但无法接收多回复,也不知道actor是否停止 Inbox收件箱出现就是解决这两个问题 示例 package akka.demo.actor imp ...
- windows下的文件管理工具--total commander
https://www.ghisler.com/ http://www.guyiren.com/archives/1647
- | C语言I作业02
C语言I博客作业02 标签: 18软件2班 李煦亮 问题 答案 这个作业属于那个课程 C语言程序设计I 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/C ...
- 程序员不装x能行?先给登录来一个图形验证码!(canvas实现)
细心的同学可以发现,现在很多网站当登录多次之后就会出现一个图形验证码,或是当提交表单.或点击获取手机验证码等等场景都会有图形验证码的出现. 那么图形验证码是为了解决什么问题而出现的呢? 什么是图形验证 ...
- Kafka跨集群迁移方案MirrorMaker原理、使用以及性能调优实践
序言Kakfa MirrorMaker是Kafka 官方提供的跨数据中心的流数据同步方案.其实现原理,其实就是通过从Source Cluster消费消息然后将消息生产到Target Cluster,即 ...
- jsMind思维导图模式展示数据
效果图: jsmind组件下载地址:https://files.cnblogs.com/files/fengyeqingxiang/jsmind.zip 后端代码,此处以C#编写的后台,Java或其他 ...
- Java自学-面向对象 方法
Java类的方法 在LOL中,一个英雄可以做很多事情,比如超神,超鬼,坑队友 能做什么在类里面就叫做方法 示例 1 : 什么是方法 比如队友残血正在逃跑,你过去把路给别人挡住了,导致他被杀掉. 这就是 ...
- [Linux] Ubuntu Server18 python3.7 虚拟环境
Ubuntu Server18 python3.7 环境 Ubuntu Server18 默认是python3.6, 目前开发主要用python3.7. 所以想搭建python3.7环境. 试过几手动 ...
- JS面向对象设计-理解对象
不同于其他面向对象语言(OO,Object-Oriented),JS的ECMAScript没有类的概念, 它把对象定义为"无序属性(基本值.对象.函数)的集合",类似于散列表. 每 ...
- 使 WIN 10进入休眠、睡眠、关机的命令
1.用命令控制定时关机,重启,休眠等 休眠:rundll32.exe powrProf.dll,SetSuspendState 休眠:shutdown -h 睡眠:rundll32.exe powrp ...