Increase the Constraints

定义两个等长的01字符串的汉明距离为它们字符不同的对应位置的个数。

给你两个01串S,T,现在有q个询问,每次指定S,T中两个定长的子串询问它们的汉明距离。

1≤|S|,|T|≤200000,1≤q≤400000

cz_xuyixuan的题解

字符不同=长度-字符相同。考虑到两个字符串的匹配问题可以用FFT处理,于是往FFT方面考虑。

分块FFT,令分块大小为B,进行O(\(\frac{n}{B}\))次FFT,处理出O(\(\frac{n}{B}\))个T的后缀与S的每个后缀能够匹配的位数。询问时容斥一下并加上边角暴力就好了。

这样的时间复杂度是O(\(\frac{n^2\log n}{B}\)+qB),取B=n\(\sqrt{\frac{\log n}{q}}\)=‭1,327.013205时,可以获得渐进意义下最优复杂度O(n\(\sqrt{q log n}\))。

有一种高妙的做法来解决01匹配问题。我们令0为1,1为-1,然后FFT。那么两个字符如果匹配,得数为1,否则为-1。我们给1和-1的总和加上长度,那么就变成了匹配得2,不匹配得0.

由于NTT常数大,所以程序取B=7200。

CO int N=524288;
int rev[N],omg[N]; void NTT(int a[],int lim,int dir){
for(int i=0;i<lim;++i)
if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=1;i<lim;i<<=1)
for(int j=0;j<lim;j+=i<<1)
for(int k=0;k<i;++k){
int t=mul(omg[lim/(i<<1)*k],a[j+i+k]);
a[j+i+k]=add(a[j+k],mod-t),a[j+k]=add(a[j+k],t);
}
if(dir==-1){
int ilim=fpow(lim,mod-2);
for(int i=0;i<lim;++i) a[i]=mul(a[i],ilim);
}
} CO int B=7200;
char s[N],t[N];int ls,lt;
int index[N],l[N],r[N],tot;
int a[N],b[N],ans[N/B][N]; int query(int ps,int pt){
int ans=0;
if(ps+B>=ls or pt+B>=lt){
for(;ps<ls and pt<lt;++ps,++pt) ans+=s[ps]==t[pt];
return ans;
}
for(;index[pt]==index[pt-1];++ps,++pt) ans+=s[ps]==t[pt];
ans+=::ans[index[pt]][ps];
return ans;
}
int main(){
scanf("%s%s",s,t);
ls=strlen(s),lt=strlen(t);
for(int i=0;i<lt;++i){
if(i%B==0) l[++tot]=i;
index[i]=tot,r[tot]=i;
}
for(int p=1;p<=tot;++p){
memset(a,0,sizeof a);
for(int i=0;i<ls;++i) a[i]=s[i]=='0'?1:mod-1;
memset(b,0,sizeof b);
for(int i=l[p];i<lt;++i) b[lt-1-i]=t[i]=='0'?1:mod-1;
int n=lt-l[p]-1; int len=ceil(log2(ls+n)),lim=1<<len;
for(int i=0;i<lim;++i) rev[i]=rev[i>>1]>>1|(i&1)<<(len-1);
omg[0]=1,omg[1]=fpow(3,(mod-1)/lim);
for(int i=2;i<lim;++i) omg[i]=mul(omg[i-1],omg[1]);
NTT(a,lim,1),NTT(b,lim,1);
for(int i=0;i<lim;++i) a[i]=mul(a[i],b[i]);
omg[1]=fpow(omg[1],mod-2);
for(int i=2;i<lim;++i) omg[i]=mul(omg[i-1],omg[1]);
NTT(a,lim,-1); for(int i=0;i<ls;++i){
ans[p][i]=add(a[i+n],add(n+1,mod-max(0,i+n-ls+1))); // edit 1
ans[p][i]=mul(ans[p][i],i2);
}
}
for(int q=read<int>();q--;){
int ps=read<int>(),pt=read<int>(),n=read<int>();
printf("%d\n",n-query(ps,pt)+query(ps+n,pt+n));
}
return 0;
}

处理ans数组的时候还是要放到模意义下,因为1和-1的总和可能为负数。

CF472G Increase the Constraints的更多相关文章

  1. 【CF472G】Design Tutorial: Increase the Constraints

    Description 给出两个01序列\(A\)和\(B\) 要求回答\(q\)个询问每次询问\(A\)和\(B\)中两个长度为\(len\)的子串的哈明距离 ​ 哈明距离的值即有多少个位置不相等 ...

  2. cf 472G Design Tutorial: Increase the Constraints 分块+压位/FFT

    题目大意 给出两个\(01\)序列\(A\)和\(B\) 哈明距离定义为两个长度相同的序列中,有多少个对应位置上的数字不一样 "00111" 和 "10101" ...

  3. CF数据结构练习

    1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...

  4. Propagation of Visual Entity Properties Under Bandwidth Constraints

    1. Introduction The Saga of Ryzom is a persistent massively-multiplayer online game (MMORPG) release ...

  5. iOS Programming Auto Layout: Programmatic Constraints 自动布局:通过编程限制

    iOS Programming  Auto Layout: Programmatic Constraints  1.  However, if your views are created in co ...

  6. States of Integrity Constraints

    States of Integrity Constraints As part of constraint definition, you can specify how and when Oracl ...

  7. Go build constraints

    Go语言有一个不(奇)错(葩)的设计,就是build constraints(构建约束).可以在源码中通过注释的方式指定编译选项,比如只允许在linux下,或者在386的平台上编译啊之类的:还可以通过 ...

  8. Unable to simultaneously satisfy constraints.

    在进行版本的迭代更新时,新功能需求需要对主页面的UI进行重新的布局,但是,报了错误,出了好多约束方面的问题: Unable to simultaneously satisfy constraints. ...

  9. Drop all the tables, stored procedures, triggers, constraints and all the dependencies in one SQL statement

    Is there any way in which I can clean a database in SQl Server 2005 by dropping all the tables and d ...

随机推荐

  1. AKKA Inbox收件箱

    起因 得到ActorRef就可以给actor发送消息,但无法接收多回复,也不知道actor是否停止 Inbox收件箱出现就是解决这两个问题 示例 package akka.demo.actor imp ...

  2. windows下的文件管理工具--total commander

    https://www.ghisler.com/ http://www.guyiren.com/archives/1647

  3. | C语言I作业02

    C语言I博客作业02 标签: 18软件2班 李煦亮 问题 答案 这个作业属于那个课程 C语言程序设计I 这个作业要求在哪里 https://edu.cnblogs.com/campus/zswxy/C ...

  4. 程序员不装x能行?先给登录来一个图形验证码!(canvas实现)

    细心的同学可以发现,现在很多网站当登录多次之后就会出现一个图形验证码,或是当提交表单.或点击获取手机验证码等等场景都会有图形验证码的出现. 那么图形验证码是为了解决什么问题而出现的呢? 什么是图形验证 ...

  5. Kafka跨集群迁移方案MirrorMaker原理、使用以及性能调优实践

    序言Kakfa MirrorMaker是Kafka 官方提供的跨数据中心的流数据同步方案.其实现原理,其实就是通过从Source Cluster消费消息然后将消息生产到Target Cluster,即 ...

  6. jsMind思维导图模式展示数据

    效果图: jsmind组件下载地址:https://files.cnblogs.com/files/fengyeqingxiang/jsmind.zip 后端代码,此处以C#编写的后台,Java或其他 ...

  7. Java自学-面向对象 方法

    Java类的方法 在LOL中,一个英雄可以做很多事情,比如超神,超鬼,坑队友 能做什么在类里面就叫做方法 示例 1 : 什么是方法 比如队友残血正在逃跑,你过去把路给别人挡住了,导致他被杀掉. 这就是 ...

  8. [Linux] Ubuntu Server18 python3.7 虚拟环境

    Ubuntu Server18 python3.7 环境 Ubuntu Server18 默认是python3.6, 目前开发主要用python3.7. 所以想搭建python3.7环境. 试过几手动 ...

  9. JS面向对象设计-理解对象

    不同于其他面向对象语言(OO,Object-Oriented),JS的ECMAScript没有类的概念, 它把对象定义为"无序属性(基本值.对象.函数)的集合",类似于散列表. 每 ...

  10. 使 WIN 10进入休眠、睡眠、关机的命令

    1.用命令控制定时关机,重启,休眠等 休眠:rundll32.exe powrProf.dll,SetSuspendState 休眠:shutdown -h 睡眠:rundll32.exe powrp ...