题意

t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数

\(t \le 500,n \le 10^{19}\)

思路

首先可以想到将n质因数分解。即\(n= \prod\limits_{i=1}^n{a_i}^{p^i}\)

答案就是\(\prod\limits_{i=1}^n{p_i+1}\)

然后我们要想办法让n最小,答案最大。

可以发现,如果存在\(a_i < a_j \&\& p_i < p_j\),那么交换\(p_i,p_j\)一定会更优秀。

也就是说对于任意的\(a_i < a_j\)都有\(p_i \ge p_j\)

然后搜索即可

代码

/*
* @Author: wxyww
* @Date: 2019-05-31 19:26:20
* @Last Modified time: 2019-05-31 21:29:54
*/
#include<cmath>
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 100100;
#define int ll
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
ll dis[N],vis[N],js;
void eur() {
int n = N - 100;
for(int i = 2;i <= n;++i) {
if(!vis[i]) dis[++js] = i;
for(int j = 1;j <= js && 1ll * dis[j] * i <= n;++j) {
vis[dis[j] * i] = 1;
if(i % dis[j] == 0) break;
}
}
return;
}
ll ans;
void solve(ll nans,ll now,ll x,ll lst) {
for(int i = 1;i <= lst && x >= dis[now];++i)
solve(nans * (i + 1),now + 1,x /= dis[now],i);
ans = max(ans,nans);
} signed main() {
int T = read();
eur();
while(T--) {
ll x = read();
ans = 0;
solve(1,1,x,10000);
printf("%lld\n",ans);
}
return 0;
}

nowcoder907B n的约数的更多相关文章

  1. BZOJ 1968: [Ahoi2005]COMMON 约数研究

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2032  Solved: 1537[Submit] ...

  2. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

  3. 【P1379】天才的约数和

    来自GDOI2007,原题已不可考-- 又自己做出来了好开心,找特殊性是个关键的切入点 原题: 这天周航遇到了靳泽旭. 周航:"我是天才!" 靳泽旭:"你为什么是天才?& ...

  4. codevs 2606 约数和问题

    题目描述 Description Smart最近沉迷于对约数的研究中. 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X) ...

  5. hdu5175 gcd 求约数

    题意:求满足条件GCD(N,M) = N XOR M的M的个数 sol:和uva那题挺像的.若gcd(a,b)=a xor b=c,则b=a-c 暴力枚举N的所有约数K,令M=NxorK,再判断gcd ...

  6. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  7. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  8. POJ 1845 (约数和+二分等比数列求和)

    题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...

  9. HDU 1452 (约数和+乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...

随机推荐

  1. Emgucv 4 下载、安装、配置

    1.下载.安装 过程可查看之前Emgucv 3的说明:https://www.cnblogs.com/doget/p/7776377.html 安装完成后,安装目录下会生成如下文件及文件夹: 2.配置 ...

  2. javascript 写一个 map方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  3. SqlHelper发布——比你期望的还要多的多(例如比MyBatis-Pagehelper性能更高)

    SqlHelper发布——比Mybatis-PageHelper性能更高 起源 前段时间开启了一个新的项目,在选择分页插件时,发现github上很流行的一个是pagehelper,在百度上搜索了一下, ...

  4. Autoware 培训笔记 No. 4——寻迹

    1. 前言 好多初创公司公布出来的视频明显都是寻迹的效果,不是说寻迹不好,相反可以证明,寻迹是自动技术开始的第一步. 自动驾驶寻迹:一种能够自动按照给定的路线(通常是采用不同颜色或者其他信号标记来引导 ...

  5. NLP第一课(我也是才开始学)

    闲着无聊的时候,我就会问问自己,编程也有了五年经验了,除了增删改查,我还会什么,有一天我跳槽,去面试的时候,我能比那些年轻而且期望薪资待遇低的年轻毕业生,我有什么优势,而且我只是一个专科的机电系学生, ...

  6. 练手WPF(一)——模拟时钟与数字时钟的制作(下)

    继续数字时钟.上一篇写好了数字笔划专用的DigitLine类.现在是时候使用它了.下面对一些主要代码进行说明. 打开MainWindow.xaml.cs文件: (1)添加字段变量 // 数字时钟字段定 ...

  7. NetCoreApi框架搭建(一、swagger插件使用)

    1.首先用vs2017创建新的项目 2.开始引入swagger插件 右击项目=>管理NuGet程序包=>搜索Swashbuckle.AspNetCore点击安装 3.打开Startup.c ...

  8. python——Tkinter图形化界面及threading多线程

    Tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口.Tk和Tkinter可以在大多数的Unix平台下使用,同样可以应用在Windows和Macinto ...

  9. Java的 Annotation 新特性

    对于软件程序的开发经过了三个发展过程: —— 将所有配置相关的内容直接写到代码之中 —— 将配置与代码程序独立,将程序运行的时候根据配置文件进行操作 —— 配置信息对用户透明且无用,将配置信息写回代码 ...

  10. 智能社javascript

    http://www.chuanke.com/?mod=student&act=study&courseid=91706