题意

t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数

\(t \le 500,n \le 10^{19}\)

思路

首先可以想到将n质因数分解。即\(n= \prod\limits_{i=1}^n{a_i}^{p^i}\)

答案就是\(\prod\limits_{i=1}^n{p_i+1}\)

然后我们要想办法让n最小,答案最大。

可以发现,如果存在\(a_i < a_j \&\& p_i < p_j\),那么交换\(p_i,p_j\)一定会更优秀。

也就是说对于任意的\(a_i < a_j\)都有\(p_i \ge p_j\)

然后搜索即可

代码

/*
* @Author: wxyww
* @Date: 2019-05-31 19:26:20
* @Last Modified time: 2019-05-31 21:29:54
*/
#include<cmath>
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 100100;
#define int ll
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
ll dis[N],vis[N],js;
void eur() {
int n = N - 100;
for(int i = 2;i <= n;++i) {
if(!vis[i]) dis[++js] = i;
for(int j = 1;j <= js && 1ll * dis[j] * i <= n;++j) {
vis[dis[j] * i] = 1;
if(i % dis[j] == 0) break;
}
}
return;
}
ll ans;
void solve(ll nans,ll now,ll x,ll lst) {
for(int i = 1;i <= lst && x >= dis[now];++i)
solve(nans * (i + 1),now + 1,x /= dis[now],i);
ans = max(ans,nans);
} signed main() {
int T = read();
eur();
while(T--) {
ll x = read();
ans = 0;
solve(1,1,x,10000);
printf("%lld\n",ans);
}
return 0;
}

nowcoder907B n的约数的更多相关文章

  1. BZOJ 1968: [Ahoi2005]COMMON 约数研究

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2032  Solved: 1537[Submit] ...

  2. 【BZOJ】3994: [SDOI2015]约数个数和

    题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...

  3. 【P1379】天才的约数和

    来自GDOI2007,原题已不可考-- 又自己做出来了好开心,找特殊性是个关键的切入点 原题: 这天周航遇到了靳泽旭. 周航:"我是天才!" 靳泽旭:"你为什么是天才?& ...

  4. codevs 2606 约数和问题

    题目描述 Description Smart最近沉迷于对约数的研究中. 对于一个数X,函数f(X)表示X所有约数的和.例如:f(6)=1+2+3+6=12.对于一个X,Smart可以很快的算出f(X) ...

  5. hdu5175 gcd 求约数

    题意:求满足条件GCD(N,M) = N XOR M的M的个数 sol:和uva那题挺像的.若gcd(a,b)=a xor b=c,则b=a-c 暴力枚举N的所有约数K,令M=NxorK,再判断gcd ...

  6. hdu1492(约数个数定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...

  7. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  8. POJ 1845 (约数和+二分等比数列求和)

    题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...

  9. HDU 1452 (约数和+乘法逆元)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...

随机推荐

  1. Istio Routing极简教程

    官网文档: https://istio.io/docs/reference/config/networking/#VirtualService 在学习像Istio这样的新技术时,看一下示例应用程序总是 ...

  2. 探索ASP.Net Core 3.0系列六:ASP.NET Core 3.0新特性启动信息中的结构化日志

    前言:在本文中,我将聊聊在ASP.NET Core 3.0中细小的变化——启动时记录消息的方式进行小的更改. 现在,ASP.NET Core不再将消息直接记录到控制台,而是正确使用了logging 基 ...

  3. Image-transpose

    import Image im=Image.open('test.jpg') #out = im.resize((128, 128),Image.BILINEAR) #改变大小 #out = im.r ...

  4. 现代WEB前端的性能优化

    现代WEB前端的性能优化 前言:这只是一份学习笔记. 什么是WEB前端 潜在的优化点: DNS是否可以通过缓存减少DNS查询时间? 网络请求的过程走最近的网络环境? 相同的静态资源是否可以缓存? 能否 ...

  5. CentOS7-安装后常见问题--ssh慢,汉字乱码gbk,-locale设置等

    00.ssh 慢问题解决修改:  [test@centos ~]$ sudo vi /etc/ssh/sshd_config /** 使用/命令查找 API 字符串*/ # GSSAPI option ...

  6. Java & PHP RSA 互通密钥、签名、验签、加密、解密

    RSA加密算法是一种非对称加密算法.在公开密钥加密和电子商业中RSA被广泛使用.RSA是1977年由罗纳德·李维斯特(Ron Rivest).阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Le ...

  7. linux bash 的基础语法

    示例均来自网络,附带有原始链接地址,自己练习整理发出,均测试可用 linux shell 基本语法 - 周学伟 - 博客园 https://www.cnblogs.com/zxouxuewei/p/6 ...

  8. 第二十一节:Asp.Net Core MVC和WebApi路由规则的总结和对比

    一. Core Mvc 1.传统路由 Core MVC中,默认会在 Startup类→Configure方法→UseMvc方法中,会有默认路由:routes.MapRoute("defaul ...

  9. 微软官方 Github 上的 EF 示例项目 EntityFramework.Docs

    项目地址:https://github.com/aspnet/EntityFramework.Docs/tree/master/samples/core 谢谢浏览!

  10. 一个人的公众号,我写了1w+

    大家好,我是Bypass,一个人一直保持着写博客的习惯,为此维护了一个技术公众号,致力于分享原创高质量干货,写的内容主要围绕:渗透测试.WAF绕过.代码审计.应急响应.企业安全. 一直以来,我把它当成 ...