【luoguP4720】【模板】扩展卢卡斯
快速阶乘与(扩展)卢卡斯定理
\(p\)为质数时
考虑 \(n!~mod~p\) 的性质
当\(n>>p\)时,不妨将\(n!\)中的因子\(p\)提出来
\(n!\) 可以写成 \(a*p^e\) , \(a\)与\(p\)互质
如何求解\(a\)和\(e\)?
显然,\(e=n/p+n/p^2+n/p^3+……\)
因为\(1\)~\(n\)有\(n/p\)个\(p\)的倍数,贡献为\(1\),\(n/p^2\)个\(p^2\)的倍数,贡献为\(2\)……
事实上,可以每次先将\(1\)$n$中$p$的倍数的因子提出来,$p,2p,3p...(n/p)p$就变成了$1,2,3...n/p$,$e+=n/p$,而$1$\(n/p\)这些数的\(a\)和\(e\)又可以递归求解
再考虑\(a\)的求法:
将\(1\)$n$中$p$的倍数拿走,递归处理求得$1$ \(n/p\)的\(a\),再乘上剩下的数\(1,2,3...p-1,p+1,p+2,...2p-1,2p+1,2p+2,...\)就行了
而剩下的数在对\(p\)取模意义下是从\(1\)~\(p-1\)的循环,于是可以预处理\(n< p\)时的\(n!\)
剩下的数的积即为: \(((p-1)!)^{n/p}\times(n~mod~p)!\)
根据威尔逊定理,\((p-1)!\equiv -1 ~(mod~p)\),可以省去快速幂
递归求解即可
#include<iostream>
#include<cstring>
#include<cstdio>
#define int long long
using namespace std;
const int MAXN=100010;
int fact[MAXN];
inline int qpow(int x,int k,int p){
int s=1%p;
while(k){
if(k&1) s=s*x%p;
k>>=1;
x=x*x%p;
}
return s;
}
inline int mod_fact(int n,int &e,int p){
e=0;
if(n<p) return fact[n];
int res=mod_fact(n/p,e,p);
e+=n/p;
if(n/p%2!=0) return res*(p-fact[n%p])%p; //((p-1)!)^(n/p)=(-1)^(n/p)
return res*fact[n%p]%p;
}
inline int C(int n,int m,int p){
if(m>n) return 0;
int e1,e2,e3;
int a1=mod_fact(n,e1,p),a2=mod_fact(m,e2,p),a3=mod_fact(n-m,e3,p);
if(e1>e2+e3) return 0; //p^(e1-e2-e3)是p的倍数,return 0
return a1*qpow(a2*a3%p,p-2,p)%p;
}
int n,m,p;
signed main()
{
int T;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld%lld",&n,&m,&p);
fact[0]=1;
for(int i=1;i<=p;++i) //预处理阶乘
fact[i]=fact[i-1]*i%p;
printf("%lld\n",C(n+m,m,p));
}
return 0;
}
\(p\)为任意数时
考虑将\(p\)分解为\(p_1^{a_1}p_2^{a_2}p_3^{a_3}...p_k^{a_k}\)
分别求解\(C(n,m)~mod ~ p_i^{a_i}\)
然后用\(CRT\)合并就可以了
求解\(C(n,m)~mod~p_i^{a_i}\)时,仍然递归求解\(1\)~\(n/p_i\),但是\(a\)是对\(p_i^{a_i}\)取模,而非对\(p_i\)取模
非\(p_i\)的倍数的数乘积计算与上面也有不同,首先\(p_i^{a_i}\)是合数,逆元只能用\(exgcd\)求了
因为是对\(p_i^{a_i}\)取模,循环是\(p_i^{a_i}-a_i\),而且不能用威尔逊定理,需要先从\(1\)~\(p_i^{a_i}\)暴力乘,再用快速幂直接计算,剩下的再暴力乘进去即可,此时预处理\(fact[i]\)就不必要了
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define int long long
using namespace std;
const int MAXN=1000010;
inline int qpow(int x,int k,int p){
int s=1;
while(k){
if(k&1) s=s*x%p;
k>>=1;
x=x*x%p;
}
return s;
}
inline int exgcd(int a,int b,int &x,int &y){
if(!b){
x=1; y=0;
return a;
}
int t=exgcd(b,a%b,y,x);
y-=a/b*x;
return t;
}
inline int mod_fact(int n,int &e,int p,int MOD){
if(!n) return 1;
int res=1;
for(int i=2;i<=MOD;++i) //暴力累乘一个循环
if(i%p) res=res*i%MOD;
res=qpow(res,n/MOD,MOD); //共有n/MOD个循环
e+=n/p;
for(int i=2;i<=n%MOD;++i)
if(i%p) res=res*i%MOD; //乘上循环外面的数
return res*mod_fact(n/p,e,p,MOD)%MOD; //递归处理n/p个p的倍数
}
inline int C(int n,int m,int p,int MOD){
if(m>n) return 0;
int e1=0,e2=0,e3=0;
int a1=mod_fact(n,e1,p,MOD),a2=mod_fact(m,e2,p,MOD),a3=mod_fact(n-m,e3,p,MOD);
if(e1-e2-e3>0){
int temp=pow(p,e1-e2-e3);
if(temp>=MOD) return 0; //p^(e1-e2-e3)是p^ai的倍数
a1=a1*temp%MOD;
}
int x,y; exgcd(a2*a3%MOD,MOD,x,y);
return a1*x%MOD;
}
int n,m,p,a[110],b[110],cnt;
signed main()
{
scanf("%lld%lld%lld",&n,&m,&p);
int k=sqrt(p),x=p;
for(int i=2;i<=k;++i)
if(x%i==0){
int t=1;
while(x%i==0)
x/=i,t*=i;
a[++cnt]=t;
b[cnt]=C(n,m,i,t);
}
if(x!=1){
a[++cnt]=x;
b[cnt]=C(n,m,x,x);
}
int A=a[1],B=b[1];
for(int i=2;i<=cnt;++i){
int k1,k2;
int g=exgcd(A,a[i],k1,k2);
int t=A;
A=A*a[i]/g;
B=(t*k1%A*(b[i]-B)/g%A+B)%A;
}
printf("%lld\n",(B+A)%A);
return 0;
}
【luoguP4720】【模板】扩展卢卡斯的更多相关文章
- [洛谷P4720] [模板] 扩展卢卡斯
题目传送门 求组合数的时候,如果模数p是质数,可以用卢卡斯定理解决. 但是卢卡斯定理仅仅适用于p是质数的情况. 当p不是质数的时候,我们就需要用扩展卢卡斯求解. 实际上,扩展卢卡斯=快速幂+快速乘+e ...
- 洛谷P4720 【模板】扩展卢卡斯
P4720 [模板]扩展卢卡斯 题目背景 这是一道模板题. 题目描述 求 C(n,m)%P 其中 C 为组合数. 输入输出格式 输入格式: 一行三个整数 n,m,p ,含义由题所述. 输出格式: 一行 ...
- 洛谷 P4720 【模板】扩展 / 卢卡斯 模板题
扩展卢卡斯定理 : https://www.luogu.org/problemnew/show/P4720 卢卡斯定理:https://www.luogu.org/problemnew/show/P3 ...
- P4720【模板】扩展卢卡斯,P2183 礼物
扩展卢卡斯定理 最近光做模板了 想了解卢卡斯定理的去这里,那题也有我的题解 然而这题和卢卡斯定理并没有太大关系(雾 但是,首先要会的是中国剩余定理和exgcd 卢卡斯定理用于求\(n,m\)大,但模数 ...
- LG4720 【模板】扩展卢卡斯定理
扩展卢卡斯定理 求 \(C_n^m \bmod{p}\),其中 \(C\) 为组合数. \(1≤m≤n≤10^{18},2≤p≤1000000\) ,不保证 \(p\) 是质数. Fading的题解 ...
- bzoj2142 礼物——扩展卢卡斯定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...
- 【知识总结】扩展卢卡斯定理(exLucas)
扩展卢卡斯定理用于求如下式子(其中\(p\)不一定是质数): \[C_n^m\ mod\ p\] 我们将这个问题由总体到局部地分为三个层次解决. 层次一:原问题 首先对\(p\)进行质因数分解: \[ ...
- VS自定义项目模板:[2]创建VSIX项目模板扩展
VS自定义项目模板:[2]创建VSIX项目模板扩展 听语音 | 浏览:1237 | 更新:2015-01-02 09:21 | 标签:软件开发 1 2 3 4 5 6 7 分步阅读 一键约师傅 百度师 ...
- 【Luogu3807】【模板】卢卡斯定理(数论)
题目描述 给定\(n,m,p(1≤n,m,p≤10^5)\) 求 \(C_{n+m}^m mod p\) 保证\(P\)为\(prime\) \(C\)表示组合数. 一个测试点内包含多组数据. 输入输 ...
随机推荐
- 一文搞懂 Flink 网络流控与反压机制
https://www.jianshu.com/p/2779e73abcb8 看完本文,你能get到以下知识 Flink 流处理为什么需要网络流控? Flink V1.5 版之前网络流控介绍 Flin ...
- phoenix kerberos 连接配置
1. 官网资料 Use JDBC to get a connection to an HBase cluster like this: Connection conn = DriverManager. ...
- 彻底搞懂etcd raft选举、数据同步
etcd raft选举机制 etcd 是一个分布式的k/V存储系统.核心使用了RAFT分布式一致性协议.一致性这个概念,它是指多个服务器在状态达成一致,但是在一个分布式系统中,因为各种意外可能,有的服 ...
- Django---静态文件配置,post提交表单的csrf问题(日后细说),创建app子项目和分析其目录,ORM对象关系映射简介,Django操作orm(重点)
Django---静态文件配置,post提交表单的csrf问题(日后细说),创建app子项目和分析其目录,ORM对象关系映射简介,Django操作orm(重点) 一丶Django的静态文件配置 #we ...
- 【开发笔记】-Tomcat启动时设置Jdk版本
1. Window版本Tomcat 到bin下的setclasspath.bat文件,在文件的开始处添加如下代码: set JAVA_HOME=D:\Program Files\Java\jdk1.8 ...
- Object中defineProperty数据描述
Object.defineProperty是对对象中的属性进行数据描述的 使用语法: Object.defineProperty(obj,prop,descriptor) 使用示例: var data ...
- 21、解决关于 vue项目中 点击按钮路由多了个问号
在vue项目开发过程中,点击按钮结果页面刷新了一遍 后来发现路径变成了 localhost:8080/?#/login 原因: 这里是 form 表单,点击了button 按钮,触发了他的默认事件,就 ...
- python 使用Anaconda管理项目环境
Pycharm没有内置的python解释器,需要我们自己下载python解释器. 在很多python项目中,会导入第三方的模块,逐个去下载导入很不方便. 我们通常使用Anaconda来管理python ...
- Java面试通关要点 汇总集【最终版】
本文转载自公众号:服务端思维,阅读大约需要7分钟.梁兄的知识储备很丰富,组织的知识星球里也是干货十足,平常还会有技术研习等活动,欢迎关注. 首先,声明下,以下知识点并非阿里的面试题.这里,笔者结合自己 ...
- Ajax跨域问题及解决方案 asp.net core 系列之允许跨越访问(Enable Cross-Origin Requests:CORS) c#中的Cache缓存技术 C#中的Cookie C#串口扫描枪的简单实现 c#Socket服务器与客户端的开发(2)
Ajax跨域问题及解决方案 目录 复现Ajax跨域问题 Ajax跨域介绍 Ajax跨域解决方案 一. 在服务端添加响应头Access-Control-Allow-Origin 二. 使用JSONP ...