1519. Formula 1

Time limit: 1.0 second

Memory limit: 64 MB

Background

Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic games of 20**, it is well-known, that the city will conduct one of the Formula 1 events. Surely, for such an important
thing a new race circuit should be built as well as hotels, restaurants, international airport - everything for Formula 1 fans, who will flood the city soon. But when all the hotels and a half of the restaurants were built, it appeared, that at the site for
the future circuit a lot of gophers lived in their holes. Since we like animals very much, ecologists will never allow to build the race circuit over the holes. So now the mayor is sitting sadly in his office and looking at the map of the circuit with all
the holes plotted on it.

Problem

Who will be smart enough to draw a plan of the circuit and keep the city from inevitable disgrace?

Of course, only true professionals - battle-hardened programmers from the first team of local technical
university!.. But our heroes were not looking for easy life and set much more difficult problem: "Certainly, our mayor will be glad, if we find how many ways of building the circuit are there!" - they said.

It should be said, that the circuit in Vologda is going to be rather simple. It will be a rectangleN*M cells in size with a single circuit segment built through each
cell. Each segment should be parallel to one of rectangle's sides, so only right-angled bends may be on the circuit. At the picture below two samples are given for N = M = 4 (gray squares mean gopher holes, and the bold black
line means the race circuit). There are no other ways to build the circuit here.

Input

The first line contains the integer numbers N and M (2 ≤ NM ≤ 12). Each of the next N lines contains M characters,
which are the corresponding cells of the rectangle. Character "." (full stop) means a cell, where a segment of the race circuit should be built, and character "*" (asterisk) - a cell, where a gopher hole is located.

Output

You should output the desired number of ways. It is guaranteed, that it does not exceed 263-1.

Samples

input output
4 4
**..
....
....
....
2
4 4
....
....
....
....
6

分析看这(转):http://blog.sina.com.cn/s/blog_51cea4040100gmky.html

依照上面链接分析就非常明白了,情况分清楚了就好写了

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=300000+10;//最多的有效状态
const int N=10+10;
int n,m,size,index;
int mp[N][N],total[2],bit[N],ex,ey;//ex,ey记录最后一个非限制点,total记录有多少状态
int head[MAX],Next[MAX],Hash[MAX];//Hash用哈希查询状态,才用邻接表查询
//对于第i,j格仅仅须要用到第i,j-1格到达,所以才用滚动数组节省内存
LL dp[2][MAX],state[2][MAX],sum;//state记录对应状态,dp记录对应状态可到达的数量 void Init(){
memset(mp,0,sizeof mp);
sum=size=index=0;
total[index]=1;
state[index][1]=0;//初始化仅仅有一种可到达状态:没有不论什么插头
dp[index][1]=1;
} void HashCalState(LL s,LL num){
int pos=s%MAX;
for(int i=head[pos];i != -1;i=Next[i]){
if(state[index][Hash[i]] == s){
dp[index][Hash[i]]+=num;
return;
}
}
++total[index];
state[index][total[index]]=s;
dp[index][total[index]]=num;
//头插法
Hash[size]=total[index];
Next[size]=head[pos];
head[pos]=size++;
} void DP(){//才用4进制进行DP,x*4^y=x*2^(2*y)
for(int i=1;i<=n;++i){
for(int k=1;k<=total[index];++k)state[index][k]<<=2;//由上移一行到达这一行(i,0格)在上一行的0号插头前面再加一个插头,去掉最后一个插头(最后一个插头肯定为0)
for(int j=1;j<=m;++j){//求由i,j-1到达i,j的状态以及状态数
memset(head,-1,sizeof head);
size=0;
index=index^1;
total[index]=0;
for(int k=1;k<=total[index^1];++k){//枚举上一格的状态,用来到达i,j某个状态
LL s=state[index^1][k];//取状态
LL num=dp[index^1][k];//取到达对应状态个数
int p=(s>>bit[j-1])%4;//取第j位
int q=(s>>bit[j])%4;//取第j+1位
if(!mp[i][j]){//i,j有限制不能通过,必须绕过
if(p+q == 0)HashCalState(s,num);//仅仅有p=q=0才干到达p'=q'=0的状态,才用哈希计算到达的状态以及个数
}else if(p+q == 0){//i,j无限制则必须有两个插头通过(一进一出)
if(!mp[i+1][j] || !mp[i][j+1])continue;
s=s+(1<<bit[j-1])+2*(1<<bit[j]);//创建新的连通块(添加第j,j+1个插头)
HashCalState(s,num);
}else if(!p && q){//p无插头,q有插头,则新状态须要添加一个插头
if(mp[i][j+1])HashCalState(s,num);//状态不变,连通块不变
if(mp[i+1][j]){
s=s+q*(1<<bit[j-1])-q*(1<<bit[j]);
HashCalState(s,num);
}
}else if(p && !q){//同上
if(mp[i+1][j])HashCalState(s,num);
if(mp[i][j+1]){
s=s-p*(1<<bit[j-1])+p*(1<<bit[j]);
HashCalState(s,num);
}
}else if(p+q == 2){//p=q=1,合并连通块
int b=1;
for(int t=j+1;t<=m;++t){//寻找近期的匹配的括号
int v=(s>>bit[t])%4;
if(v == 1)++b;
if(v == 2)--b;
if(b == 0){
s=s+(1<<bit[t])-2*(1<<bit[t]);//将右括号变为左括号
break;
}
}
s=s-(1<<bit[j-1])-(1<<bit[j]);
HashCalState(s,num);
}else if(p+q == 4){//p=q=2,同上
int b=1;
for(int t=j-2;t>=0;--t){//寻找近期的匹配括号
int v=(s>>bit[t])%4;
if(v == 2)++b;
if(v == 1)--b;
if(b == 0){
s=s-(1<<bit[t])+2*(1<<bit[t]);//将左括号变为右括号
break;
}
}
s=s-2*(1<<bit[j-1])-2*(1<<bit[j]);
HashCalState(s,num);
}else if(p == 1 && q == 2){//合并连通块,仅仅有最后一格的时候才连成整个回路
if(i == ex && j == ey)sum+=num;
}else if(p == 2 && q == 1){
s=s-2*(1<<bit[j-1])-(1<<bit[j]);
HashCalState(s,num);
}
}
}
}
} int main(){
char ch;
for(int i=0;i<N;++i)bit[i]=i<<1;//求4进制的某位用2进制求须要右移的位数*2
while(~scanf("%d%d",&n,&m)){
Init();
for(int i=1;i<=n;++i){
getchar();
for(int j=1;j<=m;++j){
scanf("%c",&ch);
mp[i][j]=(ch == '.');
if(ch == '.')ex=i,ey=j;
}
}
DP();//插头DP
printf("%lld\n",sum);
}
return 0;
}
/*
12 12
............
............
............
............
............
............
............
............
............
............
............
............
9 10
..........
..........
..........
..........
..........
..........
..........
..........
..........
*/

版权声明:本文博客原创文章,博客,未经同意,不得转载。

ural1519插头DP的更多相关文章

  1. URAL1519 Formula 1 【插头dp】

    题目链接 URAL1519 题解 看题型显然插头\(dp\) 考虑如何设计状态 有这样一个方案 当我们决策到某个位置 轮廓线长这样 你会发现插头一定是相互匹配的 所以我们实际上可以把状态用括号序列表示 ...

  2. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  3. [URAL1519] Formula 1 [插头dp入门]

    题面: 传送门 思路: 插头dp基础教程 先理解一下题意:实际上就是要你求这个棋盘中的哈密顿回路个数,障碍不能走 看到这个数据范围,还有回路处理,就想到使用插头dp来做了 观察一下发现,这道题因为都是 ...

  4. 模板:插头dp

    前言: 严格来讲有关dp的都不应该叫做模板,因为dp太活了,但是一是为了整理插头dp的知识,二是插头dp有良好的套路性,所以姑且还叫做模板吧. 这里先推荐一波CDQ的论文和这篇博客http://www ...

  5. 省选算法学习-插头dp

    插头dp?你说的是这个吗? 好吧显然不是...... 所谓插头dp,实际上是“基于连通性的状态压缩dp”的简称,最先出现在cdq的论文里面 本篇博客致力于通过几道小小的例题(大部分都比较浅显)来介绍一 ...

  6. [HNOI2007][bzoj1187] 神奇游乐园 [插头dp]

    题面: 传送门 给定一个四联通棋盘图,每个格子有权值,求一条总权值最大的回路 思路: 插头dp基础教程 棋盘? 回路? n,m<=10? 当然是插头dp啦~\(≧▽≦)/~ 然后发现这道题并不是 ...

  7. ural 1519 fomular 1 既插头DP学习笔记

    直接看CDQ在2008年的论文吧. 个人认为她的论文有两个不明确的地方, 这里补充一下: 首先是轮廓的概念. 我们在进行插头DP时, 是从上往下, 从左往右逐个格子进行的, 已经处理的格子与未经处理的 ...

  8. 插头dp

    插头dp 感受: 我觉得重点是理解,算法并不是直接想出怎样由一种方案变成另一种方案.而是方案本来就在那里,我们只是枚举状态统计了答案. 看看cdq的讲义什么的,一开始可能觉得状态很多,但其实灰常简单 ...

  9. HDU 4113 Construct the Great Wall(插头dp)

    好久没做插头dp的样子,一开始以为这题是插头,状压,插头,状压,插头,状压,插头,状压,无限对又错. 昨天看到的这题. 百度之后发现没有人发题解,hust也没,hdu也没discuss...在acm- ...

随机推荐

  1. sqlserver缓存程序-只能使用一次清除缓存计划

    plan cache非常大.将仅仅使用一次的缓存计划清除,而不用清除整个cache. declare @sid varbinary(64) declare cur01 cursor for selec ...

  2. CloudFoundry.yml修订

    --- name: CFRELEASE02 director_uuid: fdd46e30-f2c5-41dc-9662-0976fdac5716 releases: - name: cf versi ...

  3. Catalan数总结

    财产: 前20条目:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, ...

  4. Async和Await进行异步编程

    使用Async和Await进行异步编程(C#版 适用于VS2015) 你可以使用异步编程来避免你的应用程序的性能瓶颈并且加强总体的响应.然而,用传统的技术来写异步应用是复杂的,同时编写,调试和维护都很 ...

  5. Matlab中调用第三方Java代码

    搞了一天,才算搞定. 第一步:定位Matlab中Java环境的ext目录 新建一个M script文件,或者直接在Matlab的交互式命令行中输入: disp(java.lang.System.get ...

  6. 皴linux rootpassword(方式:重置rootpassword)

    皴linux rootpassword: 开机后,.点击"e"进入维护模式.选"内核选项",例如,看到下面的数字: watermark/2/text/aHR0c ...

  7. awk学习总结(两) How awk works and awk CMD in a file

    测试文件names Tom Savage 100 Molly Lee 200 John Doe 300 $0 代表file的整行; $1,第一列;$2,第二列...... $ awk '/Tom/{p ...

  8. NET动态调用WebService

    NET动态调用WebService 这不是一篇教你了解WebService的博文,也不是对WebService的深入理解, 这是一篇教你在开发过程中,如果动态的调用WebService一个方法. 在比 ...

  9. 深入解析java乱码

    1.什么是编码 ,为什么要编码 先前从没有思考这么深入的问题,觉得一切理所当然,直到有一天java的乱码让我跪了,他不在听我的话,到处是乱码,这次我不打算放过它,我要收拾了它. 大家都知道,文本文件, ...

  10. 批处理获取IP地址

    setlocal ENABLEEXTENSIONS & set "i=0.0.0.0" & set "j=" for /f "toke ...