Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)
D. Directed Roads
2 seconds
256 megabytes
standard input
standard output
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of ntowns numbered from 1 to n.
There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.
ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak(k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.
Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.
Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.
3
2 3 1
6
4
2 1 1 1
8
5
2 4 2 5 3
28
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are ,
,
initially. Number the roads 1 to 3 in this order.
The sets of roads that ZS the Coder can flip (to make them not confusing) are{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.
The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.
找到所有的环,对于每个环,算出每个环的节点,每一条边都可翻或不翻,有2^n种情况,减去初始情况,和所有边都翻转的情况,2^n-2.
记录所有环上的节点,n-sum是剩余节点,然后乘以2^(n-sum).
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
const int maxn = 2e5+;
typedef long long ll;
const ll mod = 1e9+;
int g[maxn];
int vis[maxn];
int deep[maxn];
ll quick_pow(ll x,int n)
{
ll res = ;
while(n){
if(n%) res = res*x%mod;
x = x*x%mod;
n /= ;
}
return res%mod;
}
int dfs(int fa,int cur,int tot)
{
deep[cur] = tot;
vis[cur] = fa;
if(vis[cur]==vis[g[cur]]&&vis[cur])
return (deep[cur]-deep[g[cur]]+);
if(!vis[g[cur]]) return dfs(fa,g[cur],tot+); //防止出现环算多了
return ;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&g[i]);
}
long long sum = ;
long long ans = ;
int node = ;
for(int i=;i<=n;i++)
{
if(!vis[i])
{
node = dfs(i,i,); //计算的环中结点有几个
if(node>) //如果无环,不用算了
ans = ans*(quick_pow(,node)-)%mod;
sum += node;
}
}
ans = ans*quick_pow(,n-sum)%mod;
printf("%I64d\n",ans);
return ;
}
Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)的更多相关文章
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量
D. Directed Roads ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...
- Codeforces Round #369 (Div. 2) D. Directed Roads 数学
D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2)-D Directed Roads
题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...
- Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路
D - Destroying Roads Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路
题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)
题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...
随机推荐
- LeetCode OJ 101. Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...
- shell之路【第一篇】shell简介与入门
shell简介 1.Shell 诞生于 Unix,Unix的第一个脚本语言,是与 Unix/Linux 交互的工具,单独地学习 Shell 是没有意义的,shell使用的熟练程度反映了用户对Unix/ ...
- qq客服问题
angularJs会给ng-href的不正常跳转,会 添加unsafe的前缀.原因是angular对href是有安全检查的,只能生成它认为安全的链接.解决方法如下: 在config.js中注入 fun ...
- linux expr命令参数及用法详解
expr用法 expr命令一般用于整数值,但也可用于字符串.一般格式为: #expr argument operator argument expr也是一个手工命令行计数器. #$expr 10 + ...
- C++设计模式-Singleton单例模式
template <typename T> class Singleton { public: template <typename... Args> static T* In ...
- call_grant_dml.sql
set echo offpromptprompt =========================================================================== ...
- IMP指针
可能大家一直看到有许多朋友在Runtime相关文章中介绍IMP指针的概念,那么IMP究竟有什么实际作用呢?让我们先从一个函数看起来. Method Swizzling 如果对Runtime有一定了解的 ...
- 大并发大数量中的MYSQL瓶颈与NOSQL介绍
NoSQL在2010年风生水起,大大小小的Web站点在追求高性能高可靠性方面,不由自主都选择了NoSQL技术作为优先考虑的方面.今年伊始,InfoQ中文站有幸邀请到凤凰网的孙立先生,为大家分享他之于N ...
- Python实现删除目录下相同文件
让我们来分析一下这个问题:首先,文件个数非常多,手工查找是不现实的,再说,单凭我们肉眼,在几千张图片或文件里面找到完全相同的难度也是很大的.所以要用程序实现.那么用程序怎么实现呢?根据什么判断两个文件 ...
- A SPI class of type org.apache.lucene.codecs.PostingsFormat with name 'Lucene40' does not exist.
简单的建立索引和查询索引并不难,关键在于他的二次开发,让他适合你自己的需求 既然要二次开发就必须查看源码 首先看看索引过程中的核心类吧: IndexWriter 这个是核心组件, 建立和打开索引,以及 ...