D. Directed Roads

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of ntowns numbered from 1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak(k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

找到所有的环,对于每个环,算出每个环的节点,每一条边都可翻或不翻,有2^n种情况,减去初始情况,和所有边都翻转的情况,2^n-2.

记录所有环上的节点,n-sum是剩余节点,然后乘以2^(n-sum).

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
const int maxn = 2e5+;
typedef long long ll;
const ll mod = 1e9+;
int g[maxn];
int vis[maxn];
int deep[maxn];
ll quick_pow(ll x,int n)
{
ll res = ;
while(n){
if(n%) res = res*x%mod;
x = x*x%mod;
n /= ;
}
return res%mod;
}
int dfs(int fa,int cur,int tot)
{
deep[cur] = tot;
vis[cur] = fa;
if(vis[cur]==vis[g[cur]]&&vis[cur])
return (deep[cur]-deep[g[cur]]+);
if(!vis[g[cur]]) return dfs(fa,g[cur],tot+); //防止出现环算多了
return ;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&g[i]);
}
long long sum = ;
long long ans = ;
int node = ;
for(int i=;i<=n;i++)
{
if(!vis[i])
{
node = dfs(i,i,); //计算的环中结点有几个
if(node>) //如果无环,不用算了
ans = ans*(quick_pow(,node)-)%mod;
sum += node;
}
}
ans = ans*quick_pow(,n-sum)%mod;
printf("%I64d\n",ans);
return ;
}

Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  3. Codeforces Round #369 (Div. 2) D. Directed Roads 数学

    D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...

  4. Codeforces Round #369 (Div. 2)-D Directed Roads

    题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...

  5. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  6. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

  7. Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)

    Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...

  8. Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路

    题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...

  9. Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)

    题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...

随机推荐

  1. hdu_5787_K-wolf Number(数位DP)

    题目链接:hdu_5787_K-wolf Number 题意: 给你一个区间,让你找满足任意k个数位内都没有相同的数字的个数 题解: 因为k不大,就直接将当前pos的前k-1个数传进去就行了 #inc ...

  2. hdu_5750_Dertouzos(线性筛)

    题目连接:hdu_5750_Dertouzos 题意: 给你一个n,一个d,问你比n小的数中有多少个数的最大的因子为d,比如6有因子1 2 3 最大的为3 题解: 当时比赛做这题的时候没考虑常数的优化 ...

  3. Codeforces Round #350 (Div. 2)_D2 - Magic Powder - 2

    D2. Magic Powder - 2 time limit per test 1 second memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #354 (Div. 2)_Vasya and String(尺取法)

    题目连接:http://codeforces.com/contest/676/problem/C 题意:一串字符串,最多改变k次,求最大的相同子串 题解:很明显直接尺取法 #include<cs ...

  5. view视图--display中echo出ob_get_contents的缓冲内容--(实现,拼接好文件--导入文件)

    view.php01默认设置有3个公共的属性,其他属性.后面实例化的时候.通过传递参数.foreach遍历,不断的增加属性02view对象的实例化.位置在-->控制器父类的构造方法中视图的目录名 ...

  6. LeetCode OJ 26. Remove Duplicates from Sorted Array

    Given a sorted array, remove the duplicates in place such that each element appear only once and ret ...

  7. android 瀑布流效果(仿蘑菇街)

    我们还是来看一款示例:(蘑菇街)           看起来很像我们的gridview吧,不过又不像,因为item大小不固定的,看起来是不是别有一番风味,确实如此.就如我们的方角图形,斯通见惯后也就出 ...

  8. 使用Visual C++编程

    1.Visual C++的主要组件 Visual C++支持遵循C++11语言标准的C++语句,C++11语言标准是在ISO/IEC 14882:2011文档中定义的.Visual C++还没有实现该 ...

  9. 【转】configure/make/make install的使用说明

    这些都是典型的使用GNU的AUTOCONF和AUTOMAKE产生的程序的安装步骤. ./configure是用来检测你的安装平台的目标特征的.比如它会检测你是不是有CC或GCC,并不是需要CC或GCC ...

  10. 常用的opengl函数(三)

    glBlendFunc 定义像素算法.   void WINAPI glBlendFunc(GLenum sfactor,GLenum dfactor); 参数编辑 sfactor 指定红绿蓝和 al ...